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An algebraic description of basic discrete symmetries (space reversalP, time reversal
T , and their combinationPT) is studied. Discrete subgroups of orthogonal groups of
multidimensional spaces over the fields of real and complex numbers are considered in
terms of fundamental automorphisms of Clifford algebras. In accordance with a divi-
sion ring structure, a complete classification of automorphism groups is established for
the Clifford algebras over the field of real numbers. The correspondence between eight
double coverings (D¸abrowski groups) of the orthogonal group and eight types of the real
Clifford algebras is defined with the use of isomorphisms between the automorphism
groups and finite groups. Over the field of complex numbers there is a correspondence
between two nonisomorphic double coverings of the complex orthogonal group and two
types of complex Clifford algebras. It is shown that these correspondences associate
with a well-known Atiyah–Bott–Shapiro periodicity. Generalized Brauer–Wall groups
are introduced on the extended sets of the Clifford algebras. The structure of the in-
equality between the two Clifford–Lipschitz groups with mutually opposite signatures
is elucidated. The physically important case of the two different double coverings of
the Lorentz groups is considered in details.

1. INTRODUCTION

In 1909, Minkowski showed that a causal structure of the world is described
by a 4-dimensional pseudo-Euclidean geometry. In accordance with Minkowski
(1909), the quadratic formx2+ y2+ z2− c2t2 remains invariant under the action
of linear transformations of the four variablesx, y, z, andt , which form a general
Lorentz groupG. As known, the general Lorentz groupG consists of an own
Lorentz groupG0 and three reflections (discrete transformations)P, T , andPT,
whereP andT are space and time reversal, andPTis a so-called full reflection. The
discrete transformationsP, T , andPTadded to an identical transformation form a
finite group. Thus, the general Lorentz group may be represented by a semidirect
productG0¯ {1,P,T,PT}. Analogously, an orthogonal groupO(p,q) of the real
spaceRp,q is represented by the semidirect product of a connected component
O0(p,q) and a discrete subgroup.
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Further, a double covering of the orthogonal groupO(p,q) is a Clifford–
Lipschitz groupPin(p,q) which is completely constructed within a Clifford alge-
braC`p,q. In accordance with squares of elements of the discrete subgroup (a =
P2, b = T2, c = (PT)2), there exist eight double coverings (D¸abrowski groups,
Da̧browski, 1988) of the orthogonal group defined by the signatures (a, b, c),
wherea, b, c ∈ {−,+}. Such in brief is a standard description scheme of the dis-
crete transformations.

However, in this scheme there is one essential flaw. Namely, the Clifford–
Lipschitz group is an intrinsic notion of the algebraC`p,q (a set of all invertible
elements ofC`p,q), whereas the discrete subgroup is introduced into the standard
scheme in an external way, and the choice of the signature (a, b, c) of the discrete
subgroup is not determined by the signature of the spaceRp,q. Moreover, it is
suggested by default that for any signature (p,q) of the vector space, there exist
all eight kinds of the discrete subgroups.

In the recent paper Varlamov (1999), to assimilate the discrete transforma-
tions into an algebraic framework, it has been shown that elements of the discrete
subgroup correspond to fundamental automorphisms of the Clifford algebras. The
set of the fundamental automorphisms added to an identical automorphism forms
a finite group, for which in virtue of the Wedderburn–Artin theorem there exists
a matrix representation. The main subject of Varlamov (1999) is the study of the
homomorphismCn+1→ Cn and its application in physics, whereCn is a Clifford
algebra over the field of complex numbersF = C.

The main goal of the present paper is a more explicit and complete formu-
lation (in accordance with a division ring structure of the algebrasC`p,q) of the
preliminary results obtained in Varlamov (1999). The classification of automor-
phism groups of Clifford algebras over the field of real numbersF = R and a
correspondence between eight D¸abrowskiPina,b,c coverings of the groupO(p,q)
and eight types ofC`p,q are established in Section 3. It is shown that the division
ring structure ofC`p,q imposes hard restrictions on the existence and choice of the
discrete subgroup, and the signature (a, b, c) depends upon the signature of the
underlying spaceRp,q. On the basis of obtained results, a nature of the inequality
Pin(p,q) 6' Pin(q, p) is elucidated in Section 4. As known, the Lorentz groups
O(3, 1) and O(1, 3) are isomorphic, whereas their double coveringsPin(3, 1)
andPin(1, 3) are nonisomorphic. With the help of Maple V package CLIFFORD
(AblÃamowicz, 1996, 2000), a structure of the inequalityPin(3, 1) 6' Pin(1, 3) is
considered as an example that is, all the possible spinor representations of a Ma-
jorana algebraC`3,1 and a spacetime algebraC`1,3, and corresponding automor-
phism groups, are analysed in detail. In connection with this, it should be noted
that the general Lorentz group is a basis for (presently most profound in both math-
ematical and physical viewpoints) Wigner’s definition of an elementary particle
as an irreducible representation of the inhomogeneous Lorentz group (Wigner,
1964).
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It is known that the Clifford algebras are modulo 8 periodic over the field of
real numbers and modulo 2 periodic over the field of complex numbers (Ativah–
Bott-Shapiro periodicity, Atiyahet al., 1964). In virtue of this periodicity, a struc-
ture of the Brauer–Wall group (Budimich and Trautman, 1988; Lounesto, 1997;
Wall, 1964) is defined on the set of the Clifford algebras, where a group element is
C`, and a group operation is a graded tensor product. The Brauer–Wall group over
the fieldF = R is isomorphic to a cyclic group of the eighth order, and over the field
F = C to a cyclic group of the second order. Generalizations of the Brauer–Wall
groups are considered in Section 5. The Trautman diagrams of the generalized
groups are defined as well.

2. PRELIMINARIES

In this section, we will consider some basic facts about Clifford algebras and
Clifford–Lipschitz groups, which we will widely use below. LetF be a field of
characteristic 0 (F = R, F = C), whereR andC are the fields of real and complex
numbers, respectively. A Clifford algebraC` over a fieldF is an algebra with 2n

basis elements:e0 (unit of the algebra)e1, e2, . . . ,en and products of the one-index
elementsei1i2···i k = ei1ei2 · · ·ei k . Over the fieldF = R, the Clifford algebra denoted
asC`p,q, where the indicesp andq correspond to the indices of the quadratic form

Q = x2
1 + · · · + x2

p − · · · − x2
p+q

of a vector spaceV associated withC`p,q. The multiplication law ofC`p,q is
defined by the following rule:

e2
i = σ (q − i )e0, ei ej = −ej ei , (1)

where

σ (n) =
{−1 if n ≤ 0,

+1 if n > 0.
(2)

The square of a volume elementω = e12··· n (n = p+ q) plays an important role
in the theory of Clifford algebras,

ω2 =
{−1 if p− q ≡ 2, 3, 6, 7 (mod 8),
+1 if p− q ≡ 0, 1, 4, 5 (mod 8).

(3)

A centerZ p,q of the algebraC`p,q consists of the unite0 and the volume element
ω. The elementω = e12··· n belongs to a center whenn is odd. Indeed,

e12···nei = (−1)n−iσ (q − i )e12···i−1i+1···n,

ei e12···n = (−1)i−1σ (q − i )e12···i−1i+1···n,
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therefore,ω ∈ Z p,q if and only if n− i ≡ i − 1 (mod 2), that is,n is odd. Further,
using (3) we obtain

Z p,q =
{

1 if p− q ≡ 0, 2, 4, 6 (mod 8),

1, ω if p− q ≡ 1, 3, 5, 7 (mod 8).
(4)

In Clifford algebraC` there exist for fundamental automorphisms.

(1) Identity: An automorphismA→ A andei → ei .
This automorphism is an identical automorphism of the algebraC`.A is
an arbitrary element ofC`.

(2) Involution: An automorphismA→ A? andei →−ei .
In more details, for an arbitrary elementA ∈ C` there exists a decom-
positionA = A′ +A′′, whereA′ is an element consisting of homoge-
neous odd elements, andA′′ is an element consisting of homogeneous
even elements, respectively. Then the automorphismA→ A? is such
that the elementA′′ is not changed, and the elementA′ changes sign:
A? = −A′ +A′′. If A is a homogeneous element, then

A? = (−1)kA, (5)

wherek is a degree of the element. It is easy to see that the automorphism
A→ A? may be expressed via the volume elementω = e12···p+q:

A? = ωAω−1, (6)

whereω−1 = (−1)
(p+q)(p+q−1)

2 ω. When k is odd, for the basis elements
ei1i2···i k the sign changes, and whenk is even, the sign is not changed.

(3) Reversion: An antiautomorphismA→ Ã andei → ei .
The antiautomorphismA→ Ã is a reversion of the elementA, that is the
substitution of each basis elementei1i2···i k ∈ A by the elementei ki k−1···i1:

ei ki k−1···i1 = (−1)
k(k−1)

2 ei1i2···i k .

Therefore, for anyA ∈ C`p,q, we have

Ã = (−1)
k(k−1)

2 A. (7)

(4) Conjugation: An antiautomorpismA→ Ã? andei →−ei .
This antiautomorphism is a composition of the antiautomorphismA→
Ã with the automorphismA→ A?. In the case of a homogeneous ele-
ment, from the formulae (5) and (7), it follows

Ã? = (−1)
k(k+1)

2 A. (8)

The Lipschitz group0p,q, also called the Clifford group, introduced by
Lipschitz (1886) may be defined as the subgroup of invertible elementss of the
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algebraC`p,q:

0p,q =
{
s ∈ C`+p,q ∪ C`−p,q | ∀x ∈ Rp,q, sxs−1 ∈ Rp,q

}
.

The set0+p,q = 0p,q ∩ C`+p,q is called thespecial Lipschitz group(Chevalley,
1955).

Let N : C`p,q → C`p,q, N(x) = x̃x. If x ∈ Rp,q, then N(x) = x(−x) =
−x2 = −Q(x).
Further, the group0p,q has a subgroup

Pin(p,q) = {s ∈ 0p,q | N(s) = ±1}. (9)

Analogously,a spinor groupSpin(p,q) is defined by the set

Spin(p,q) = {s ∈ 0+p,q | N(s) = ±1
}
. (10)

It is obvious thatSpin(p,q) = Pin(p,q) ∩ C`+p,q. The groupSpin(p,q) contains
a subgroup

Spin+(p,q) = {s ∈ Spin(p,q) | N(s) = 1}. (11)

It is easy to see that the groupsO(p,q), SO(p,q), andSO+(p,q) are isomorphic,
respectively, to the following quotient groups

O(p,q) ' Pin(p,q)/Z2, SO(p,q) ' Spin(p,q)/Z2,

SO+(p,q) ' Spin+(p,q)/Z2,

where the kernelZ2 = {1,−1}. Thus, the groupsPin(p,q), Spin(p,q), and
Spin+(p,q) are the double coverings of the groupsO(p,q), SO, and
SO+(p,q), respectively.

On the other hand, there exists a more detailed version of thePin group (9)
proposed by D¸abrowski in 1988. In general, there are eight double coverings of
the orthogonal groupO(p,q) (Blau and Da̧browski, 1989; D¸abrowski, 1988):

ρa,b,c : Pina,b,c(p,q)→ O(p,q),

wherea, b, c ∈ {+,−}. As known, the groupO(p,q) consists of four connected
components: identity-connected componentO0(p,q), and three components cor-
responding to parity reversalP, time reversalT , and the combination of these two
PT, that is,O(p,q) = (O0(p,q)) ∪ P(Q0(p,q)) ∪ T(Q0(p,q)) ∪ PT(O0(p,q)).
Further, since the four-element group (reflection group){1, P, T,PT} is isomor-
phic to the finite groupZ2⊗ Z2 (Gauss–Klein veergruppe, Salingaros, 1981, 1984),
thenO(p,q) may be represented by a semidirect productO(p,q) ' O0(p,q)¯
(Z2⊗ Z2). The signs ofa, b, andc correspond to the signs of the squares of the
elements inPina,b,c(p,q) that cover space reflectionP, time reversalT , and a
combination of these twoPT (a = −P2, b = T2, c = −(PT)2) in Da̧browski’s
(1988) notation anda = P2, b = T2, c = (PT)2 in Chamblin’s (1994) notation,
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which we will use below). An explicit form of the groupPina,b,c(p,q) is given by
the following semidirect product

Pina,b,c(p,q) ' (Spin0(p,q)¯ Ca,b,c)

Z2
, (12)

whereCa,b,c are the four double coverings ofZ2⊗ Z2. All the eight double cov-
erings of the orthogonal groupO(p,q) are given in the following table:

a b c Ca,b,c Remark

+ + + Z2 ⊗ Z2 ⊗ Z2 PT = TP
+ − − Z2 ⊗ Z4 PT = TP
− + − Z2 ⊗ Z4 PT = TP
− − + Z2 ⊗ Z4 PT = TP

− − − Q4 PT = −TP
− + + D4 PT = −TP
+ − + D4 PT = −TP
+ + − D4 PT = −TP

HereZ4, Q4, andD4 are complex, quaternion, and dihedral groups, respectively.
According to Da̧browski (1988) the groupPina,b,c(p,q) satisfying the condition
PT= −TP is calledCliffordian, andnon-CliffordianwhenPT= TP.

One of the most fundamental theorems in the theory of associative algebras
is as follows:

Theorem 1 (Wedderburn–Artin). Any finite-dimensional associative simple al-
gebraA over the fieldF is isomorphic to a full matrix algebraMn(K), where n is
a natural number defined unambiguously, andK a division ring defined with an
accuracy of isomorphism.

In accordance with this theorem, all properties of the initial algebraA are
isomorphically transferred to the matrix algebraMn(K). Later on we will widely
use this theorem. In its turn, for the Clifford algebraC`p,q over the fieldF = R
we have an isomorphismC`p,q ' EndK(I p,q) ' M2m(K), wherem= p+q

2 , I p,q =
C`p,q f is a minimal left ideal ofC`p,q, andK = f C`p,q f is a division ring of
C`p,q. The primitive idempotent of the algebraC`p,q has a form

f = 1

2

(
1± eα1

)1

2

(
1± eα2

) · · · 1
2

(
1± eαk

)
,

whereeα1, eα2, . . . ,eαk are commuting elements with square 1 of the canonical
basis ofC`p,q generating a group of order 2k. The values ofk are defined by a
formulak = q − rq−p, whereri are the Radon–Hurwitz numbers (Hurwitz, 1923;
Radon, 1922), values of which form a cycle of period 8:ri+8 = ri + 4. The values



P1: VENDOR

International Journal of Theoretical Physics [ijtp] PP072-296070 February 22, 2001 12:0 Style file version Nov. 19th, 1999

Discrete Symmetries and Clifford Algebras 775

of all ri are

i 0 1 2 3 4 5 6 7

ri 0 1 2 2 3 3 3 3
.

All the Clifford algebrasC`p,q over the fieldF = R are divided into eight different
types with the following division ring structure:

I. Central simple algebras.
(1) Two typesp− q ≡ 0, 2 (mod 8), with a division ringK ' R.
(2) Two typesp− q ≡ 3, 7 (mod 8), with a division ringK ' C.
(3) Two typesp− q ≡ 4, 6 (mod 8), with a division ringK ' H.

II. Semisimple algebras.
(4) The typep− q ≡ 1 (mod 8), with a double division ringK ' R⊕ R.
(5) The typep− q ≡ 5 (mod 8), with a double quaternionic division

ringK ' H⊕H.

Over the fieldF = C there is an isomorphismCn ' M2n/2(C) and there are two
different types of complex Clifford algebrasCn: n ≡ 0 (mod 2) andn ≡ 1 (mod 2).

In virtue of the Wedderburn–Artin theorem, all fundamental automorphisms
of C` are transferred to the matrix algebra. Matrix representations of the funda-
mental automorphisms ofCn was first obtained by Rashevskii in 1955 (Rashevskii,
1955): (1) Involution:A? =WAW−1, whereW is a matrix of the automorphism?
(matrix representation of the volume elementω); (2) Reversion:̃A = EA>E−1,
whereE is a matrix of the antiautomorphism̃satisfying the conditionsEi E−
EE>i = 0 and E> = (−1)

m(m−1)
2 E (Ei = γ (ei ) are matrix representations of the

units of the algebraC`); (3) Conjugation:Ã? = CA>C−1, whereC = EW> is
a matrix of the antiautomorphism̃? satisfying the conditionsCE> + Ei C = 0 and
C> = (−1)

m(m+1)
2 C.

In the recent paper Varlamov (1999), it has been shown that space rever-
sal P, time reversalT , and combinationPT correspond to the fundamental au-
tomorphismsA→ A?, A→ Ã, andA→ Ã? respectively. Moreover, there is
an isomorphism between the discrete subgroup{1, P, T,PT} ' Z2⊗ Z2 (P2 =
T2 = (PT)2 = 1,PT= TP) of O(p,q) and an automorphism group Aut (C`) =
{Id, ?, ,̃ ?̃}:

Id ? ˜ ?̃ 1 P T PT

Id Id ? ˜ ?̃ 1 1 P T PT

? ? Id ?̃ ˜ ∼ P P 1 PT T

˜ ˜ ?̃ Id ? T T PT 1 P

?̃ ?̃ ˜ ? Id PT PT T P 1
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Further, in the caseP2 = T2 = (PT)2 = ±1 andPT= −TP, there is an isomor-
phism between the group{1, P, T,PT} and an automorphism groupAut(C`) =
{I,W,E,C}. So, for the Dirac algebraC4 in the canonicalγ -basis, there exists
a standard (Wigner) representationP = γ0 and T = γ1γ3 (Berestetskiiet al.,
1982), therefore,{1, P, T,PT} = {1, γ0, γ1γ3, γ0γ1γ3}. On the other hand, in the
γ -basis, an automorphism group ofC4 has a formAut(C4) = {I,W,E,C} =
{I, γ0γ1γ2γ3, γ1γ3, γ0γ2}. It has been shown (Varlamov, 1999) that{1, P, T,PT} =
{1, γ0, γ1γ3, γ0γ1γ3} ' Aut(C4) ' Z4, whereZ4 is a complex group with the sig-
nature (+,−,−). Generalizations of these results onto the algebrasCn are con-
tained in the following two theorems:

Theorem 2 (Varlamov, 1999). LetAut(Cn) = {I,W,E,C} be a group of the fun-
damental automorphisms of the algebraCn (n = 2m), whereW = E1E2 · · · EmEm+1

Em+2 · · · E2m, E = E1E2 · · · Em, andC = Em+1Em+2 · · · E2m if m ≡ 1 (mod 2), and
E = Em+1Em+2 · · · E2m, C = E1E2 · · · Em if m ≡ 0 (mod 2). Let Aut−(Cn) and
Aut+(Cn) be the automorphism groups, in which all the elements commute(m≡
0 (mod 2))and anticommute(m≡ 1 (mod 2)), respectively. Then over the field
F = C, there exist only two non-isomorphic groups:Aut−(Cn) ' Z2⊗ Z2 with
the signature(+,+,+) if n ≡ 0, 4 (mod 8)andAut+(Cn) ' Q4/Z2 with the sig-
nature(−,−,−) if n ≡ 2, 6 (mod 8).

Theorem 3 (Varlamov, 1999). LetPina,b,c(n,C) be a double covering of the
complex orthogonal group O(n,C) of the spaceCn associated with the complex
algebraCn. A dimensionality of the algebraCn is even(n = 2m), squares of
the symbols a,b, c ∈ {−,+} correspond to squares of the elements of the finite
group Aut = {I,W,E,C}: a =W2, b= E2, c= C2, whereW,E, and C are the
matrices of the fundamental automorphismsA→ A?, A→ Ã, andA→ Ã? of
Cn, respectively. Then over the fieldF = C, for the algebraCn there are two
non-isomorphic double coverings of the group O(n,C):

(1) A non-Cliffordian group

Pin+,+,+(n,C) ' (Spin0(n,C)¯ Z2⊗ Z2⊗ Z2)

Z2
,

if n ≡ 0, 4 (mod 8).
(2) A Cliffordian group

Pin−,−,−(n,C) ' (Spin0(n,C)¯ Q4)

Z2
,

if n ≡ 2, 6 (mod 8).
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3. DISCRETE SYMMETRIES OVER THE FIELD F=R

Theorem 4. Let C̀ p,q be a Clifford algebra over a fieldF = R and let
Aut(C`p,q) = {I,W,E,C} be a group of fundamental automorphisms of the alge-
bra C̀ p,q. Then for eight types of the algebras C`p,q there exist, depending upon
a division ring structure of C̀p,q, following isomorphisms between finite groups
and groupsAut(C`p,q) with different signatures(a, b, c), where a, b, c ∈ {−,+}:

(1) K ' R, types p− q ≡ 0, 2 (mod 8).
If E = Ep+1Ep+2 · · · Ep+q and C = E1E2 · · · Ep, then Abelian groups
Aut−(C`p,q)'Z2⊗ Z2 with the signature(+,+,+) andAut−(C`p,q) '
Z4 with the signature(+,−,−) exist at p,q ≡ 0 (mod 4)and p,q ≡
2 (mod 4), respectively, for the type p− q ≡ 0 (mod 8), and also
Abelian groupsAut−(C`p,q) ' Z4 with the signature(−,−,+) and
Aut−(C`p,q) ' Z4 with the signature(−,+,−) exist at p≡ 0 (mod 4),
q ≡ 2 (mod 4)and p≡ 2 (mod 4), q ≡ 0 (mod 4)for the type p− q ≡
2 (mod 8), respectively.

If E = E1E2 · · · Ep and C = Ep+1Ep+2 · · · Ep+q, then non-Abelian
groups Aut+(C`p,q) ' D4/Z2 with the signature (+,−,+) and
Aut+(C`p,q) ' D4/Z2 with the signature(+,+,−) exist at p,q ≡ 3
(mod 4) and p,q ≡ 1 (mod 4), respectively, for the type p− q ≡ 0
(mod 8), and also non-Abelian groupsAut+(C`p,q) ' Q4/Z2 with
(−,−,−) and Aut+(C`p,q) ' D4/Z2 with (−,+,+) exist at p≡ 3
(mod 4), q ≡ 1 (mod 4)and p≡ 1 (mod 4), q ≡ 3 (mod 4) for the
type p− q ≡ 2 (mod 8), respectively.

(2) K ' H, types p− q ≡ 4, 6 (mod 8).
If E = E j1E j2 · · · E jk is a product of k skewsymmetric matrices (among
which l matrices have a square+I and t matrices have a square−I)
andC = Ei1Ei2 · · · Ei p+q−k is a product of p+ q − k symmetric matrices
(among which h matrices have a square+I and g have a square−I),
then at k≡ 0 (mod 2)for the type p− q ≡ 4 (mod 8)there exist Abelian
groupsAut−(C`p,q) ' Z2⊗ Z2 with (+,+,+) and Aut−(C`p,q) ' Z4

with (+,−,−) if l − t , h− g ≡ 0, 1, 4, 5 (mod 8)and l− t , h− g ≡
2, 3, 6, 7 (mod 8), respectively. And also at k≡ 0 (mod 2)for the type
p− q ≡ 6 (mod 8) there existAut−(C`p,q) ' Z4 with (−,+,−) and
Aut−(C`p,q) ' Z4 with (−,−,+) if l − t ≡ 0, 1, 4, 5 (mod 8), h− g ≡
2, 3, 6, 7 (mod 8) and l− t ≡ 2, 3, 6, 7 (mod 8), h− g ≡ 0, 1, 4, 5
(mod 8), respectively.

Inversely, ifE = Ei1Ei2 · · · Ei p+q−k is a product of p+ q − k sym-
metric matrices andC = E j1E j2 · · · E jk is a product of k skewsymmet-
ric matrices, then at k≡ 1 (mod 2) for the type p− q ≡ 4 (mod 8)
there exist non-Abelian groupsAut+(C`p,q) ' D4/Z2 with (+,−,+)
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andAut+(C`p,q) ' D4/Z2 with (+,+,−) if h − g ≡ 2, 3, 6, 7 (mod 8),
l − t ≡ 0, 1, 4, 5 (mod 8)and h− g ≡ 0, 1, 4, 5 (mod 8), l − t ≡ 2, 3, 6,
7 (mod 8), respectively. And also at k≡ 1 (mod 2) for the type p−
q ≡ 6 (mod 8) there existAut+(C`p,q) ' Q4/Z2 with (−,−,−) and
Aut+(C`p,q) ' D4/Z2 with(−,+,+) if h − g, l − t ≡ 2, 3, 6, 7 (mod 8)
and h− g, l − t ≡ 0, 1, 4, 5 (mod 8), respectively.

(3) K ' R⊕ R,K ' H⊕H, types p− q ≡ 1, 5 (mod 8).
For the algebras C̀0,q of the types p− q ≡ 1, 5 (mod 8) there exist
Abelian automorphism groups with the signatures(−,−,+), (−,+,−)
and non-Abelian automorphism groups with the signatures(−,−,−),
(−,+,+). Correspondingly, for the algebras C`p,0 of the types p− q ≡
1, 5 (mod 8)there exist Abelian groups with(+,+,+), (+,−,−) and
non-Abelian groups with(+,−,+), (+,+,−). In a general case for
C`p,q, the types p− q ≡ 1, 5 (mod 8)admit all eight automorphism
groups.

(4) K = C, types p− q ≡ 3, 7 (mod 8).
The types p− q ≡ 3, 7 (mod 8) admit the Abelian group
Aut−(C`p,q) ' Z2⊗ Z2 with the signature(+,+,+) if p ≡ 0 (mod 2)
and q≡ 1 (mod 2), and also non-Abelian groupAut+(C`p,q) ' Q4/Z2

with the signature(−,−,−) if p ≡ 1 (mod 2)and q≡ 0 (mod 2).

Proof: Before we proceed to prove this theorem, let us consider in more details
a matrix (spinor) representation of the antiautomorphismsA→ Ã andA→ Ã?.
According to Wedderburn-Artin theorem, the antiautomorphismA→ Ã corre-
sponds to an antiautomorphism of the full matrix algebraM2m(K): A→ A>, in
virtue of the well-known relation (AB)> = B>A>, whereT is a symbol of transpo-
sition. On the other hand, in the matrix representation of the elementsA ∈ C`p,q,
for the antiautomorphismA→ Ã we haveA→ Ã. A composition of the two
antiautomorphisms,A> → A→ Ã, gives an automorphismA> → Ã, which is an
internal automorphism of the algebraM2m(K):

Ã = EA>E−1, (13)

whereE is a matrix, by means of which the antiautomorphismA→ Ã is expressed
in the matrix representation of the algebraC`p,q. Under action of the antiautomor-
phismA→ Ã the units ofC`p,q remain unaltered,ei → ei ; therefore in the matrix
representation, we must demandEi → Ei , whereEi = γ (ei ) also. Therefore, for
the definition of the matrixE in accordance with (13), we have

Ei → Ei = EE>E−1. (14)

Or, let{Eαi } be a set consisting of symmetric matrices (E>αi
= Eαi ) and let{Eβ j } be a

set consisting of skewsymmetric matrices (E>β j
= −Eβ j ). Then the transformation
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(14) may be rewritten in the following form:

Eαi → Eαi = EEαi E
−1, Eβ j → Eβ j = −EEβ j E

−1.

Whence

Eαi E = EEαi , Eβ j E = −EEβ j . (15)

Thus, the matrixE of the antiautomorphismA→ Ã commutes with a symmetric
part of the spinbasis of the algebraC`p,q and anticommutes with a skewsymmetric
part. An explicit form of the matrixE in dependence on the type of the algebras
C`p,q will be found later, but first let us define a general form ofE, that is, let us
show that for the form ofE there are only two possibilities: (1)E is a product of
symmetric matrices or (2)E is a product of skewsymmetric matrices. Let us prove
this assertion another way: LetE = Eα1Eα2 · · · EαsEβ1Eβ2 · · · Eβk be a product ofs
symmetric andk skewsymmetric matrices. At this point, 1< s+ k ≤ p+ q. The
permutation condition of the matrixE with the symmetric basis matricesEαi have
a form

Eαi E = (−1)i−1σ (αi )Eα1 · · · Eαi−1Eαi+1 · · · EαsEβ1 · · · Eβk ,
(16)

EEαi = (−1)k+s−iσ (αi )Eα1 · · · Eαi−1Eαi+1 · · · EαsEβ1 · · · Eβk .

From here we obtain a comparisonk+ s− i ≡ i − 1 (mod 2), that is, atk+ s≡
0 (mod 2),E andEαi anticommute and atk+ s≡ 1 (mod 2) commute. Analogously,
for the skewsymmetric part we have

Eβ j E = (−1)s+ j−1σ (β j )Eα1 · · · EαsEβ1 · · · Eβ j−1Eβ j+1 · · · Eβk ,
(17)

EEβ j = (−1)k− jσ (βi )Eα1 · · · EαsEβ1 · · · Eβ j−1Eβ j+1 · · · Eβk .

From the comparisonk− s≡ 2 j − 1 (mod 2), it follows that atk− s≡ 0 (mod 2),
E andEβ j anticommute and atk− s≡ 1 (mod 2) commute. Letk+ s= p+ q,
then from (16) we see that atp+ q ≡ (mod 2),E andEαi anticommute, which
is inconsistent with (15). The casep+ q ≡ 1 (mod 2) is excluded, since a di-
mensionality ofC`p,q is even (in the case of odd dimensionality the algebra
C`p+1,q (C`p,q+1) is isomorphic to EndK⊕K̂(I p,q ⊕ Î p,q) ' M2m(K)⊕M2m(K),
wherem= (p+ q)/2. Let suppose now thatk+ s< p+ q, that is, let us elim-
inate from the productE one symmetric matrix, thenk+ s≡ 1 (mod 2) and in
virtue of (16) the matricesEαi that belong toE commute withE, but the matrix that
does not belong toE anticommute withE. Thus, we came to a contradiction with
(15). It is obvious that elimination of two, three, or more symmetric matrices from
E gives an analogous situation. Now, let us eliminate fromE one skewsymmetric
matrix, thenk+ s≡ 1 (mod 2) and in virtue of (16)E and allEαi commute with
each other. Further, in virtue of (17) the matricesEβ j that belong to the productE
commute withE, whereas the the skewsymmetric matrix that does not belong to
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E anticommute withE. Therefore we again come to a contradiction with (15). We
come to an analogous situation if we eliminate two, three, or more skewsymmet-
ric matrices. Thus, the productE does not contain simultaneously symmetric and
skewsymmetric matrices. Hence it follows that the matrix of the antiautomorphism
A→ Ã is a product of only symmetric or only skewsymmetric matrices.

Further, the matrix representations of the antiautomorphismA→ Ã?: Ã? =
CA>C−1 is defined in a similar manner. First of all, since under action of the
antiautomorphism̃? we haveei →−ei , in the matrix representation we must
demandEi →−Ei also, or

Ei →−Ei = CE>C−1. (18)

Taking into account the symmetric{Eαi } and the skewsymmetric{Eβ j } parts of the
spinbasis, we can write the transformation (18) in the form

Eαi →− Eαi = CEαi C
−1, Eβ j → Eβ j = CEβ j C

−1.

Hence it follows

CEαi = −Eαi C, Eβ j C = CEβ j . (19)

Thus, in contrast with (15) the matrixC of the antiautomorphism̃? anticommutes
with the symmetric part of the spinbasis of the algebraC`p,q and commutes with
the skewsymmetric part of the same spinbasis. Further, in virtue of (6) a matrix
representation of the automorphism? is defined as follows

A? =WAW−1, (20)

whereW is a matrix representation of the volume elementω. The antiautomor-
phismA→ Ã?, in turn, is the composition of the antiautomorphismA→ Ãwith
the automorphismA→ A?; therefore, from (13) and (20) it follows (recall that
the order of the composition of the transformations (13) and (20) is not important,
sinceÃ? = (Ã)? = (Ã?)) : Ã? =WEA>E−1W−1 = E(WAW−1)>E−1, or

Ã? = (WE)A>(WE)−1 = (EW)A>(EW)−1, (21)

sinceW−1 =W>. Therefore,C = EW or C =WE. By this reason a general form
of the matrixC is similar to the form of the matrixE, that is,C is a product of
symmetric or skewsymmetric matrices only.

Let us consider in sequence definitions and permutation conditions of ma-
trices of the fundamental automorphisms (which are the elements of the groups
Aut(C`p,q)) for all eight types of the algebrasC`p,q, depending upon the division
ring structure.

(1) The typep− q ≡ 0 (mod 8),K ' R.

In this case according to Wedderburn–Artin theorem there is an isomorphism
C`p,q ' M2m(R), wherem= p+q

2 . First, let consider a casep = q = m. In the
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full matrix algebraM2m(R), in accordance with the signature of the algebraC`p,q

a choice of the symmetric and skewsymmetric matricesEi = γ (ei ) is hardly
fixed.

E>i =
{Ei , if 1 ≤ i ≤ m;

−Ei , if m+ 1≤ i ≤ 2m
(22)

That is, at this point the matrices of the first and second half of the basis have
a square+I and−I, respectively. Such a form of the basis (22) is explained by
the following reason: Over the fieldR there exist only symmetric matrices with
a square+I, and there exist no symmetric matrices with a square− I. Inversely,
skewsymmetric matrices over the fieldR only have a square− I. Therefore, in
this case the matrix of the antiautomorphismA→ Ã is a product ofm symmetric
matrices,E = E1E2 · · · Em, or is a product ofm skewsymmetric matrices,E =
Em+1Em+2 · · · E2m. In accordance with (15), let us find permutation conditions of
the matrixE with the basis matricesEi . If E = E1E2 · · · Em, andEi belong to the
first half of the basis (22), 1≤ i ≤ m, then

EEi = (−1)m−iE1E2 · · · Ei−1Ei+1 · · · Em,
(23)

Ei E = (−1)i−1E1E2 · · · Ei−1Ei+1 · · · Em.

Therefore, we have a comparisonm− i ≡ i − 1 (mod 2), whencem≡ 2i −
1 (mod 2). Thus, the matrixE anticommutes atm≡ 0 (mod 2) and commutes
at m≡ 1 (mod 2) with the basis matricesEi . Further, letE = E1E2 · · · Em, andEi

belong to the second half of the basism+ 1≤ i ≤ 2m, then

EEi = (−1)mEi E. (24)

Therefore atm≡ 0 (mod 2),E commutes and atm≡ 1 (mod 2) anticommutes
with the matrices of the second half of the basis.

Let nowE = Em+1Em+2 · · · E2m be a product ofm skewsymmetric matrices,
then

EEi = (−1)mEi E 1≤ i ≤ m (25)

and

EEi = −(−1)m−iEm+1Em+2 · · · Ei−1Ei+1 · · · E2m,

Ei E = −(−1)i−iEm+1Em+2 · · · Ei−1Ei+1 · · · E2m,
m+ 1≤ i ≤ 2m (26)

that is, atm≡ 0 (mod 2)E commutes with the matrices of the first half of the
basis (22) and anticommutes with the matrices of the second half of (22). At
m≡ 1 (mod 2)E anticommutes and commutes with the first and the second half
of the basis (22), respectively.
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Let us find permutation conditions of the matrixE with a matrixW of the
volume element (a matrix of the automorphism?). Let E = EiE2 · · · Em, then

EW = E1E2 · · · EmE1E2 · · · E2m = (−1)
m(m−1)

2 Em+1Em+2 · · · E2m,
(27)

WE = E1E2 · · · E2mE1E2 · · · Em = (−1)
m(3m−1)

2 Em+1Em+2 · · · E2m.

Whencem(3m−1)
2 ≡ m(m−1)

2 (mod 2) and, therefore atm≡ 0 (mod 2),E and W
commute, and atm≡ 1 (mod 2) anticommute. It is easy to verify that analogous
conditions take place ifE = Em+1Em+2 · · · E2m is the product of skewsymmetric
matrices.

SinceC = EW, a matrix of the antiautomorphism̃? has a formC = Em+1

Em+2 · · · E2m if E = E1E2 · · · Em and correspondingly,C = E1E2 · · · Em if E =
Em+1Em+2 · · · E2m. Therefore, permutation conditions of the matricesC and W
would be the same as that ofE andW, that is,C andW commute ifm≡ 0 (mod 2)
and anticommute ifm≡ 1 (mod 2). It is easy to see that permutation conditions
of the matrixC with the basis matricesEi coincide with (23)–(26).

Out of dependence on the choice of the matricesE andC, the permutation
conditions between them in any of the two cases considered previously are defined
by the following relation

EC = (−1)m
2
CE, (28)

that is, the matricesE and C commute ifm≡ 0 (mod 2) and anticommute if
m≡ 1 (mod 2).

Now, let us consider squares of the elements of the automorphism groups
Aut(C`p,q), p− q ≡ 0 (mod 8), andp = q = m. For the matrices of the automor-
phisms̃ and̃?, we have the following two possibilities:

(a) E = E1E2 · · · Em, C = Em+1Em+2 · · · E2m.

E2=
{+I, if m≡ 0, 1 (mod 4),

−I, if m≡ 2, 3 (mod 4);
C2=

{+I, if m≡ 0, 3 (mod 4),

−I, if m≡ 1, 2 (mod 4).
(29)

(b) E = Em+1Em+2 · · · E2m, C = E1E2 · · · Em.

E2=
{+I, if m≡ 0, 3 (mod 4),

−I, if m≡ 1, 2 (mod 4);
C2=

{+I, if m≡ 0, 1 (mod 4),

−I, if m≡ 2, 3 (mod 4).
(30)

In virtue of (3), for the matrix of the automorphism? we have alwaysW2 = +I.
Now, we are in a position to define automorphism groups for the typep− q ≡

0 (mod 8). First of all, let us consider Abelian groups. In accordance with (27) and
(28), the automorphism group is Abelian ifm≡ 0 (mod 2) (W, E, andC commute
with each other). In virtue of (15) and (22), the matrixE should be commuted with
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the first (symmetric) half and anticommuted with the second (skewsymmetric) half
of the basis (22). From (23)–(26) it is easy to see that this condition is satisfied
only if E = Em+1Em+2 · · · E2m andm≡ 0 (mod 2). Correspondingly, in accordance
with (19), the matrixC should be anticommuted with the symmetric half of the
basis (22) and commuted with the skewsymmetric half of the same basis. It is
obvious that this condition is satisfied only ifC = E1E2 · · · Em. Therefore, when
m= p = q in accordance with (30), there exist Abelian groupsAut−(C`p,q) '
Z2⊗ Z2 with the signature (+,+,+) if p,q ≡ 0 (mod 4), andAut−(C`p,q) ' Z4

with the signature (+,−,−) if p,q ≡ 2 (mod 4). Further, in accordance with
(27) and (28), the automorphism group is non-Abelian ifm≡ 1 (mod 2). In this
case, from (23)–(26) it follows that the matrixE commutes with the symmetric
half and anticommutes with the skewsymmetric half of the basis (22) if and only
if E = E1E2 · · · Em is a product ofm symmetric matrices,m≡ 1 (mod 8). In its
turn, the matrixC anticommutes with the symmetric half and commutes with
the skewsymmetric half of the basis (22) if and only ifC = Em+1Em+2 · · · E2m.
Therefore, in accordance with (29), there exist non-Abelian groupsAut+(C`p,q) '
D4/Z2 with the signature (+,−,+) if p,q ≡ 3 (mod 4), andAut+(C`p,q) '
D4/Z2 with the signature (+,+,−) if p,q ≡ 1 (mod 4).

In addition to the previously considered casep = q, the type p− q ≡ 0
(mod 8) also admits two particular cases in relation with the algebrasC`p,0 and
C`0,q. In these cases, a spinbasis is defined as follows

E>i = Ei for the algebrasC`8t,0,

E>i = −Ei for the algebrasC`0,8t .
t = 1, 2, . . .

that is, a spinbasis of the algebraC`8t,0 consists of only symmetric matrices, and
that ofC`0,8t consists of only skewsymmetric matrices. According to (15), for the
algebraC`p,0 the matrixE should commute with allEi . It is obvious that we cannot
take matrixE of the formE1E2 · · · Es, where 1< s< p, since ats≡ 0 (mod 2)E
andEi anticommute, which contradicts with (15), and ats≡ 1 (mod 2)E and
Ei that belong toE commute with each other, whereasEi that do not belong to
E anticommute withE, which again contradicts with (15). The cases= p is
also excluded, sincep is even. Therefore, only one possibility remains, that is,
the matrixE is proportional to the unit matrix,E ∼ I. At this point, from (21) it
follows thatC ∼ E1E2 · · · Ep, and we see that the conditions (19) are satisfied. Thus,
the matricesE ∼ I, C = EW, andW of the fundamental automorphismsA→ Ã,
A→ Ã?, andA→ A? of the algebraC`p,0 (p ≡ 0 (mod 8)) from an Abelian
groupAut−(C`p,0) ' Z2⊗ Z2. Further, for the algebrasC`0,8t , in accordance with
(15) the matrixE should anticommute with allEi . It is easy to see that we cannot
take matrixE of the formE1E2 · · · Ek, where 1< k < q, since atk ≡ 0 (mod 2) the
matrixE and the matricesEi that belong toE anticommute with each other, whereas
Ei that do not belong toE commute withE, which contradicts with (15). Inversely,
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if k ≡ 1 (mod 2),E andEi that belong toE commute, butE andEi that do not
belong toE anticommute, which also contradicts with (15). It is obvious that in this
caseE ∼ I is excluded; therefore,E ∼ E1E2 · · · Eq. In this case, according to (19)
the matrixC is proportional to the unit matrix. Thus, the matricesE ∼ E1E2 · · · Eq,
C = EW ∼ I, andW of the automorphismsA→ Ã, A→ Ã?, andA→ A? of
the algebraC`0,q (q ≡ 0 (mod 8)) from the groupAut−(C`0,q) ' Z2⊗ Z2.

(2) The typep− q ≡ 2 (mod 8),K ' R.

In virtue of the isomorphismC`p,q ' M
2

p+q
2

(R) for the typep− q ≡ 2 (mod 8)
in accordance with the signature of the algebraC`p,q, we have the following basis:

E>i =
{Ei , if 1 ≤ i ≤ p,

−Ei , if p+ 1≤ i ≤ p+ q.
(31)

Therefore, in this case the matrix of the antiautomorphism˜ is a product ofp
symmetric matrices (E = E1E2 · · · Ep) or is a product ofq skewsymmetric matrices
(E = Ep+1Ep+2 · · · Ep+q). Let us find permutation conditions of the matrixE with
the basis matricesEi . Let E = E1E2 · · · Ep, then

EEi = (−1)p−iE1E2 · · · Ei−1Ei+1 · · · Ep,

Ei E = (−1)i−1E1E2 · · · Ei−1Ei+1 · · · Ep,
1≤ i ≤ p (32)

and

EEi = (−1)pEi E, p+ 1≤ i ≤ p+ q, (33)

that is, at p ≡ 0 (mod 2) the matrixE anticommutes with the symmetric and
commutes with the skewsymmetric part the basis (31). Correspondingly, atp ≡
1 (mod 2)E commutes with the symmetric and anticommutes with the skewsym-
metric part of the basis (31).

Analogously, letE = Ep+1Ep+2 · · · Ep+q, then

EEi = (−1)qEi E 1≤ i ≤ p (34)

and

EEi = −(−1)q−iEp+1Ep+2 · · · Ei−1Ei+1 · · · Ep+q;

Ei E = −(−1)i−1Ep+1Ep+2 · · · Ei−1Ei+1 · · · Ep+q,
p+ 1≤ i ≤ p+ q (35)

that is, atq ≡ 0 (mod 2) the matrixE commutes with the symmetric and an-
ticommutes with the skewsymmetric part of the basis (31). Correspondingly,
at q ≡ 1 (mod 2)E anticommutes with the symmetric and commutes with the
skewsymmetric part of (31).
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Further, permutation conditions of the matricesE = E1E2 · · · Ep andW are
defined by the following relations:

EW = E1E2 · · · EpE1E2 · · · Ep+q = (−1)
p(p−1)

2 Ep+1Ep+2 · · · Ep+q,
(36)

WE = E1E2 · · · Ep+qE1E2 · · · Ep = (−1)
p(p−1)

2 +pqEp+1Ep+2 · · · Ep+q.

From a comparisonp(p−1)
2 + pq ≡ p(p−1)

2 (mod 2) it follows that the matricesE
andW commute with each other ifpq ≡ 0 (mod 2) and anticommute ifpq ≡
1 (mod 2). If we takeE = Ep+1Ep+2 · · · Ep+q, then the relations

EW = Ep+1Ep+2 · · · Ep+qE1E2 · · · Ep+q = (−1)
q(q+1)

2 +pqE1E2 · · · Ep,
(37)

WE = E1E2 · · · Ep+qEp+1Ep+2 · · · Ep+q = (−1)
q(q+1)

2 E1E2 · · · Ep

give analogous permutation conditions forE and W (pq ≡ 0, 1 (mod 2)). It is
obvious that permutation conditions ofC (the matrix of the antiautomorphism̃? )
with the basis matricesEi and withW are analogous to the conditions (32)–(35)
and (36)–(37), respectively.

Out of dependence on the choice of the matricesE andC, permutation con-
ditions between them are defined by a relation

EC = (−1)pqCE, (38)

that is,E andC commute ifpq ≡ 0 (mod 2) and anticommute ifpq ≡ 1 (mod 2).
For the squares of the automorphisms˜ and ?̃ we have following two

possibilities:

(a) E = E1E2 · · · Ep, C = Ep+1Ep+2 · · · Ep+q.

E2 =
{+I, if p ≡ 0, 1 (mod 4);

−I, if p ≡ 2, 3 (mod 4),
C2 =

{+I, if q ≡ 0, 3 (mod 4);

−I, if q ≡ 1, 2 (mod 4).
(39)

(b) E = Ep+1Ep+2 · · · Ep+q, C = E1E2 · · · Ep.

E2 =
{+I, if q ≡ 0, 3 (mod 4);

−I, if q ≡ 1, 2 (mod 4),
C2 =

{+I, if p ≡ 0, 1 (mod 4);

−I, if p ≡ 2, 3 (mod 4).
(40)

For the typep− q ≡ 2 (mod 8) in virtue of (3) a square of the matrixW is always
equal to−I.

Now, let us consider automorphism groups for the typep− q ≡ 2 (mod 8).
In accordance with (36)–(38), the automorphism groupAut(C`p,q) is Abelian if
pq ≡ 0 (mod 2). Further, in virtue of (15) and (31), the matrix of the antiautomor-
phism̃ should commute with the symmetric part of the basis (31) and anticommute
with the skewsymmetric part of the same basis. From (32)–(35), it is easy to see that
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this condition is satisfied atpq ≡ 0 (mod 2) if and only ifE = Ep+1Ep+2 · · · Ep+q is
a product ofq skewsymmetric matrices (recall that for the typep− q ≡ 2 (mod 8),
the numbersp and q are both even or both odd). Correspondingly, in accor-
dance with (19), the matrixC should anticommute with the symmetric part of
the basis (31) and commute with the skewsymmetric part of the same basis.
It is obvious that this requirement is satisfied if and only ifC = E1E2 · · · Ep is
a product ofp symmetric matrices. Thus in accordance with (40), there exist
Abelian groupsAut−(C`p,q) ' Z4 with the signature (−,−,+) if p ≡ 0 (mod 4)
andq ≡ 2 (mod 4) and with the signature (−,+,−) if p ≡ 2 (mod 4) andq ≡
0 (mod 4). Further, according to (36)–(38), the automorphism group is non-Abelian
if pq ≡ 1 (mod 2). In this case, from (32)–(35) it follows that the matrix of the
antiautomorphism˜ commutes with the symmetric part of the basis (31) and
anticommutes with the skewsymmetric part if and only ifE = E1E2 · · · Ep is a
product of p symmetric matrices. In its turn, the matrixC anticommutes with
the symmetric part of the basis (31) and commutes with the skewsymmetric part
of the same basis if and only ifC = Ep+1Ep+2 · · · Ep+q. Therefore in accordance
with (39), there exist non-Abelian groupsAut+(C`p,q) ' Q4/Z2 with the signa-
ture (−,−,−) if p ≡ 3 (mod 4) andq ≡ 1 (mod 4)Aut+(C`p,q) ' Q4/Z2 and
with the signature (−,+,+) if p ≡ 1 (mod 4) andq ≡ 3 (mod 4).

(3) The typep− q ≡ 6 (mod 8),K ' H.

First of all, over the ringK ' H there exists no fixed basis of the form (22) or
(31) for the matricesEi . In general, a number of the skewsymmetric matrices does
not coincide with a number of matrices with the negative square (E2

j = −I) as it
takes place for the typesp− q ≡ 0, 2 (mod 8). Thus, the matrixE is a product of
skewsymmetric matricesE j , among which there are matrices with positive and neg-
ative squares, orE is a product of symmetric matricesEi , among which also there
are matrices with (+) and (−) squares. Letk be a number of the skewsymmetric
matricesE j of a spinbasis of the algebraC`p,q, 0≤ k ≤ p+ q. Among the ma-
tricesE j , l have (+)-square andt matrices have (−)-square. Let 0< k < p+ q
and letE = E j1E j2 · · · E jk be a matrix of the antiautomorphismA→ Ã. Then,
permutation conditions of the matrixE with the matricesEi r of the symmetric
part (0< r ≤ p+ q − k) and with the matricesE ju of the skewsymmetric part
(0< u ≤ k) have the respective form

EEi r = (−1)kEi r E 0< r ≤ p+ q − k, (41)

EE ju = (−1)k−uσ ( ju)E j1E j2 · · · E ju−1E ju+1 · · · E jk ,

E ju E = (−1)u−1σ ( ju)E j1E j2 · · · E ju−1E ju+1 · · · E jk ,
0< u ≤ k (42)

that is, atk ≡ 0 (mod 2) the matrixE commutes with the symmetric and an-
ticommutes with the skewsymmetric part of the spinbasis. Correspondingly, at
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k ≡ 1 (mod 2), E anticommutes with the symmetric and commutes with the
skewsymmetric part. Further, letE = Ei1Ei2 · · · Ei p+q−k be a product of the sym-
metric matrices, then

EEi r = (−1)p+q−kσ (i r )Ei1Ei2 · · · Ei r−1Ei r+1 · · · Ei p+q−k ,

Ei r E = (−1)r−1σ (i r )Ei1Ei2 · · · Ei r−1Ei r+1 · · · Ei p+q−k ,
0< r ≤ p+ q − k (43)

EE ju = (−1)p+q−kE ju E, 0< u ≤ k (44)

that is, atp+ q − k ≡ 0 (mod 2) the matrixE anticommutes with the symmetric
and commutes with the skewsymmetric part of the spinbasis. Correspondingly, at
p+ q − k ≡ 1 (mod 2)E commutes with the symmetric and anticommutes with
the skewsymmetric part. It is easy to see that permutation conditions of the matrix
C with the basis matricesEi coincide with (41)–(44).

For the permutation conditions of the matricesW = Ei1Ei2 · · · Ei p+q−kE j1E j2 · · ·
E jk , E = E j1E j2 · · · E jk , andC = Ei1Ei2 · · · Ei p+q−k we have

EW = (−1)
k(k−1)

2 +t+k(p+q−k)Ei1Ei2 · · · Ei p+q−k ,
(45)

WE = (−1)
k(k−1)

2 +tEi1Ei2 · · · Ei p+q−k .

EC = (−1)k(p+q−k)CE. (46)

Hence it follows that the matricesW, E, and C commute atk(p+ q − k) ≡
0 (mod 2) and anticommute atk(p+ q − k) ≡ 1 (mod 2). It is easy to verify that
permutation conditions for the matricesE = Ei1Ei2 · · · Ei p+q−k andC = E j1E j2 · · · E jk
would be the same.

In accordance with (15), (19), (41)–(44), and also with (45)–(46), the Abelian
automorphism groups for the typep− q ≡ 6 (mod 8) exist only if E =
E j1E j2 · · · E jk andC = Ei1Ei2 · · · Ei p+q−k , k ≡ 0 (mod 2). Letl andt be the quantities
of the matrices in the productE j1E j2 · · · E jk , which have (+) and (−)-squares, re-
spectively, and also leth andg be the quantities of the matrices with the same mean-
ing in the productEi1Ei2 · · · Ei p+q−k . Then, the groupAut−(C`p,q) ' Z4 with the sig-
nature (−,+,−) exists ifl − t ≡ 0, 1, 4, 5 (mod 8) andh− g ≡ 2, 3, 6, 7 (mod 8)
(recall that for the typep− q ≡ 6 (mod 8) we haveW2 = −I), and also, the group
Aut−(C`p,q) ' Z4 with the signature (−,−,+) exists ifl − t ≡ 2, 3, 6, 7 (mod 8)
andh− g ≡ 0, 1, 4, 5 (mod 8). Further, from (15), (19), and (41)–(46), it follows
that the non-Abelian automorphism groups exist only ifE = Ei1Ei2 · · · Ei p+q−k and
C = E j1E j2 · · · E jk , k ≡ 1 (mod 2). At this point the groupAut+(C`p,q) ' Q4/Z2

with the signature (−,−,−) exists if h− g ≡ 2, 3, 6, 7 (mod 8) andl − t ≡
2, 3, 6, 7 (mod 8). Correspondingly, the groupAut+(C`p,q) ' D4/Z2 with the sig-
nature (−,+,+) exists ifh− g ≡ 0, 1, 4, 5 (mod 8) andl − t ≡ 0, 1, 4, 5 (mod 8).
In absence of the skewsymmetric matricesk = 0, the spinbasis ofC`p,q contains
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only symmetric matrices. In this case, from (15), it follows that the matrix of
the antiautomorphismA→ Ã should commute with all the basis matrices. It is
obvious that this condition is satisfied if and only ifE is proportional to the unit
matrix. At this point, from (21), it follows thatC ∼ E1E2 · · · Ep+q and we see that
condition (19) is satisfied. Thus, we have the Abelian groupAut−(C`p,q) ' Z4

with the signature (−,+,−). In the other degenerate casek = p+ q, the spinba-
sis ofC`p,q contains only skewsymmetric matrices; therefore, the matrixE should
anticommute with all the basis matrices. This condition is satisfied if and only
if E ∼ E1E2 · · · Ep+q. In its turn, the matrixC commutes with all the basis ma-
trices if and only ifC ∼ I. It is easy to see that in this case we have the group
Aut−(C`p,q) ' Z4 with the signature (−,−,+).

(4) The typep− q ≡ 4 (mod 8),K ' H.

It is obvious that a proof for this type is analogous to the casep− q ≡ 6 (mod 8),
where alsoK ' H. For the typep− q ≡ 4 (mod 8) we haveW2 = +I. As well as
for the typep− q ≡ 6 (mod 8), the Abelian groups exist only ifE = E j1E j2 · · · E jk
andC = Ei1Ei2 · · · Ei p+q−k , k ≡ 0 (mod 2). At this point the groupAut−(C`p,q) '
Z2⊗ Z2 with (+,+,+) exists if l − t , h− g ≡ 0, 1, 4, 5 (mod 8), and also the
groupAut−(C`p,q) ' Z4 with (+,−,−) exists ifl − t ,h− g ≡ 2, 3, 6, 7 (mod 8).
Correspondingly, the non-Abelian group exist only ifE is a product ofk skewsym-
metric matrices andC is a product ofp+ q − k symmetric matrices,k ≡ 1 (mod 2).
The groupAut+(C`p,q) ' D4/Z2 with (+,−,+) exists if h− g ≡ 2, 3, 6, 7
(mod 8), l − t ≡ 0, 1, 4, 5 (mod 8), and the groupAut+(C`p,q) ' D4/Z2 with
(+,+,−) exists ifh− g ≡ 0, 1, 4, 5 (mod 8),l − t ≡ 2, 3, 6, 7 (mod 8). For the
type p− q ≡ 4 (mod 8) both the degenerate casesk = 0 andk = p+ q give rise
to the groupAut−(C`p,q) ' Z2⊗ Z2.

(5) The typep− q ≡ 1 (mod 8),K ' R⊕ R.

In this case a dimensionalityp+ q is odd and the algebraC`p,q is semi-simple.
Over the ringK ' R⊕ R the algebras of this type decompose into a direct sum
of two subalgebras with even dimensionality. At this point there exist two types of
decomposition (Porteous, 1969; Rashevskii, 1957):

C`p,q ' C`p,q−1⊕ C`p,q−1, (47)

C`p,q ' C`q,p−1⊕ C`q,p−1, (48)

where each algebraC`p,q−1 (C`q,p−1) is obtained by means of either of the two
central idempotents12(1± e1e2 · · ·ep+q) and isomorphisms

C`+p,q ' C`p,q−1, (49)

C`+p,q ' C`q,p−1. (50)
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In general, the structure of the ringK ' R⊕ R in virtue of the decompositions
(47)–(48) and isomorphisms (49)–(50) admits all eight kinds of the automorphism
groups, since the subalgebras in the direct sums (47)–(48) have the typep− q ≡
2 (mod 8) or the typep− q ≡ 0 (mod 8). More precisely, for the algebrasC`0,q of
the typep− q ≡ 1 (mod 8), the subalgebras in the direct sum (47) have the type
p− q ≡ 2 (mod 8) and only this type; therefore, in accordance with previously
obtained conditions for the typep− q ≡ 2 (mod 8), we have four and only four
kinds of the automorphism groups with the signatures (−,−,+), (−,−,+) and
(−,−,−), (−,+,+). Further, for the algebraC`p,0 (p− q ≡ 1 (mod 8)), the
subalgebras in the direct sum (48) have the typep− q ≡ 0 (mod 8); therefore,
in this case there exist four and only four kinds of the automorphism groups with
the signatures (+,+,+), (+,−,−) and (+,−,+), (+,+,−). In a general case,
C`p,q, the typep− q ≡ 1 (mod 8) admits all eight kinds of the automorphism
groups.

(6) The typep− q ≡ 5 (mod 8),K ' H⊕H.

In this case the algebraC`p,q is also semi-simple and, therefore, we have decom-
positions of the form (47)–(48). By analogy with the typep− q ≡ 1 (mod 8), a
structure of the double quaternionic ringK ' H⊕H in virtue of the decompo-
sitions (47)–(48) and isomorphisms (49)–(50), also admits, in a general case, all
eight kinds of the automorphism groups, since the subalgebras in the direct sums
(47)–(48) have the typep− q ≡ 6 (mod 8) or the typep− q ≡ 4 (mod 8). More
precisely, for the algebrasC`0,q of the typep− q ≡ 5 (mod 8), the subalgebras
in the direct sum (47) have the typep− q ≡ 6 (mod 8) and only this type; there-
fore, in accordance with previously obtained results for the quaternionic rings we
have four and only four kinds of the automorphism groups with the signatures
(−,+,−), (−,−,+) and (−,−,−), (−,+,+). Analogously, for the algebras
C`p,0 (p− q ≡ 5 (mod 8)), the subalgebras in the direct sum (48) have the type
p− q ≡ 4 (mod 8); therefore, in this case there exist four and only four kinds of
the automorphism groups with the signatures (+,+,+), (+,−,−) and (+,−,+),
(+,+,−). In a general case,C`p,q, the typep− q ≡ 5 (mod 8) admits all eight
kinds of the automorphism groups.

(7) The typep− q ≡ 3 (mod 8),K ' C.

For this type a centerZ of the algebraC`p,q consists of the unit and the volume
elementω = e1e2 · · ·ep+q, sincep+ q is odd and the elementω commutes with
all the basis elements of the algebraC`p,q. Moreover,ω2 = −1, hence it follows
that Z ' R⊕ iR. Thus, for the algebrasC`p,q of the typep− q ≡ 3 (mod 8),
there exists an isomorphism

C`p,q ' Cn−1, (51)

wheren = p+ q. It is easy to see that the algebraCn−1 = C2m in (51) is a complex
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algebra with even dimensionality, wherem is either even or odd. More precisely,
the numberm is even ifp ≡ 0 (mod 2) andq ≡ 1 (mod 2), and odd ifp ≡ 1 (mod 2)
andq ≡ 0 (mod 2). In accordance with Theorem 2, atm≡ 0 (mod 2) the algebra
C2m admits the Abelian groupAut−(C2m) ' Z2⊗ Z2 with (+,+,+), and atm≡
1 (mod 2) the non-Abelian groupAut+(C2m) ' Q4/Z2 with (−,−,−). Hence it
follows the statement of the theorem for this type.

(8) The typep− q ≡ 7 (mod 8),K ' C.

It is obvious that for this type the isomorphism (51) also takes places. Therefore,
the type p− q ≡ 7 (mod 8) admits the groupAut−(C`p,q) ' Z2⊗ Z2 if p ≡
0 (mod 2) andq ≡ 1 (mod 2), and also the groupAut+(C`p,q) ' Q4/Z2 if p ≡
1 (mod 2) andq ≡ 0 (mod 2). ¤

Corollary 1. The matricesE andC of the antiautomorphismsA→ Ã andA→
Ã? over the fieldF = R satisfy the following conditions

E> = (−1)
m(m−1)

2 E, C> = (−1)
m(m+1)

2 C, (52)

that is,E is symmetric if m≡ 0, 1 (mod 4)and skewsymmetric if m≡ 2, 3 (mod 4).
Correspondingly,C is symmetric if m≡ 0, 3 (mod 4)and skewsymmetric if m≡
1, 2 (mod 4).

Proof: Let us consider first the types with the ringK ' R. As follows from
Theorem 4, the typep− q ≡ 0 (mod 8) admits the Abelian automorphism groups
(EC = CE) if E is the product ofq skewsymmetric matrices (q ≡ 0, 2 (mod 4))
andC is the product ofp symmetric matrices (p ≡ 0, 2 (mod 4)). Therefore,

E> = (Em+1Em+2 · · · E2m)> = E>2m · · · E>m+2E>m+1

= (−E2m) · · · (−Em+2)(−Em+1)

= E2m · · · Em+2Em+1 = (−1)
q(q−1)

2 E, (53)

C> = (E1E2 · · · Em)> = E>m · · · E>2 E>1 = Em · · · E2E1 = (−1)
p(p−1)

2 C. (54)

Further, the typep− q ≡ 0 (mod 8) admits the non-Abelian automorphism groups
(EC = −CE) if E is the product ofp symmetric matrices (p ≡ 1, 3 (mod 4)) and
C is the product ofq-skewsymmetric matrices (q ≡ 1, 3 (mod 4)). In this case, we
have

E> = (E1E2 · · · Em)> = E>m · · · E>2 E>1 = Em · · · E2E1 = (−1)
p(p−1)

2 E, (55)

C> = (Em+1Em+2 · · · E2)> = E>2m · · · E>m+2E>m+1

= (−E2m) · · · (−Em+2)(−Em+1)

= −E2m · · · Em+2Em+1 = −(−1)
q(q−1)

2 C. (56)
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In the degenerate caseC`p,0, p ≡ 0 (mod 8), we haveE ∼ I andC ∼ E1E2 · · · Ep.

Therefore,E is always symmetric andC> = (−1)
p(p−1)

2 C. In the other degenerate
caseC`0,q, q ≡ 0 (mod 8), we haveE ∼ E1E2 · · · Eq andC ∼ I; therefore,E> =
(−1)

q(q−1)
2 E andC is always symmetric.

Since for the typep− q ≡ 0 (mod 8) we havep = q = m, or m= p and
m= q for the degenerate cases (both degenerate cases correspond to the Abelian
groupZ2⊗ Z2), it is easy to see that the formulas (53) and (55) coincide with the
first formula of (52). For the matrixC, we can unite the formulas (54) and (56) into
the formula which coincides with the second formula of (52). Indeed, the factor
(−1)

m(m+1)
2 does not change sign inC> = (−1)

m(m+1)
2 C whenm is even, and changes

sign whenm is odd, which is equivalent to both formulas (54) and (56).
Further, the following real typep− q ≡ 2 (mod 8) admits the Abelian au-

tomorphism groups ifE = Ep+1Ep+2 · · · Ep+q andC = E1E2 · · · Ep, wherep and
q ≡ 0, 2 (mod 4). Therefore,

E> = (Ep+1Ep+2 · · · Ep+q)> = E>p+q · · · E>p+2E>p+1

= (−Ep+q) · · · (−Ep+2)(−Ep+1)

= Ep+q · · · Ep+2Ep+1 = (−1)
q(q−1)

2 E, (57)

C> = (E1E2 · · · Ep)> = E>p · · · E>2 E>1 = Ep · · · E2E1 = (−1)
p(p−1)

2 C. (58)

Correspondingly, the typep− q ≡ 2 (mod 8) admits the non-Abelian automor-
phism groups ifE = E1E2 · · · Ep andC = Ep+1Ep+2 · · · Ep+q, where p andq ≡
1, 3 (mod 4). In this case, we have

E> = (E1E2 · · · Ep)> = E>p · · · E>2 E>1 = Ep · · · E2E1 = (−1)
p(p−1)

2 E, (59)

C> = (Ep+1Ep+2 · · · Ep+q)> = E>p+q · · · E>p+2E>p+1

= (−Ep+q) · · · (−Ep+2)(−Ep+1)

= −Ep+q · · · Ep+2Ep+1 = −(−1)
q(q−1)

2 C. (60)

It is easy to see that formulas (57)–(60) are similar to the formulas (53)–(56) and,
therefore, the conditions (52) hold for the typep− q ≡ 2 (mod 8).

Analogously, the quaternionic typesp− q ≡ 4, 6 (mod 8) admit the Abelian
automorphism groups ifE = E j1E j2 · · · E jk andC = Ei1Ei2 · · · Ei p+q−k , wherek and
p+ q − k are even (Theorem 4). Transposition of these matrices gives

E> = (E j1E j2 · · · E jk )
> = E>jk · · · E>j2E>j1

= (−E jk ) · · · (−E j2)(−E j1)

= E jk · · · E j2E j1 = (−1)
k(k−1)

2 E, (61)
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C> = (Ei1Ei2 · · · Ei p+q−k

)> = E>i p+q−k
· · · E>i2 E>i1 = Ei p+q−k · · · Ei2Ei1

= (−1)
(p+q−k)(p+q−k−1)

2 C. (62)

The non-Abelian automorphism groups take place for the typesp− q ≡ 4, 6
(mod 8) if E = Ei1Ei2 · · · Ei p+q−k and C = E j1E j2 · · · E jk , wherek and p+ q − k
are odd. In this case we have

E> = (Ei1Ei2 · · · Ei p+q−k

)> = E>i p+q−k
· · · E>i2 E>i1

= Ep+q−k · · · Ei2Ei1 = (−1)
(p+q−k)(p+q−k−1)

2 E, (63)

C> = (E j1E j2 · · · E jk

)> = E>jk · · · E>j2E>j1 = (−E jk

) · · · (−E j2

)(−E j1

)
= −E jk · · · E j1E j1 = −(−1)

k(k−1)
2 C. (64)

As it takes place for these two types considered here, we again come to the same
situation. Therefore, the conditions (52) hold for the quaternionic typesp− q ≡
4, 6 (mod 8).

In virtue of the isomorphism (51) and Theorem 4, the matricesE andC for
the typesp− q ≡ 3, 7 (mod 8) with the ringK ' C have the following form:
E = E1E2 · · · Em, C = Em+1Em+2 · · · E2m if m≡ 1 (mod 2) (EC = −CE) andE =
Em+1Em+2 · · · E2m, C = E1E2 · · · Em if m≡ 0 (mod 2) (EC = CE). It is obvious that
for these types the conditions (52) hold.

Finally, for the semi-simple typesp− q ≡ 1, 5 (mod 8) in virtue of the de-
compositions (47)–(48) we have the formulas (53)–(56) or (57)–(60) in case of the
ring K ' R⊕ R (p− q ≡ 1 (mod 8)) and the formulas (61)–(64) in case of the
ringK ' H⊕H (p− q ≡ 5 (mod 8)). ¤

An algebraic structure of the discrete transformations is defined by the iso-
morphism{Id, ?, ,̃ ?̃} ' {1, P, T,PT} (Varlamov, 1999). Using (9) or (12), we
can apply this structure to the double coverings of the orthogonal groupO(p,q).
Obviously, in case of the typesp− q ≡ 0, 2, 4, 6 (mod 8), it is established directly.
Further, in virtue of the isomorphism (51) for the typesp− q ≡ 3, 7 (mod 8), we
have

Pin(p,q) ' Pin(n− 1,C),

wheren = p+ q. Analogously, for the semi-simple typesp− q ≡ 1, 5 (mod 8)
in virtue of the decompositions (47)–(48) the algebraC`p,q is isomorphic to a
direct sum of two mutually annihilating simple ideals1

2(1± ω)C`p,q: C`p,q '
1
2(1+ ω)C`p,q ⊕ 1

2(1− ω)C`p,q, whereω = e12···p+q. At this point, each ideal is
isomorphic toC`p,q−1 or C`q,p−1. Therefore, for the Clifford–Lipschitz groups of
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these types, we have the following isomorphisms:

Pin(p,q) ' Pin(p,q − 1)
⋃

e12···p+qPin(p,q − 1),

Pin(p,q) ' Pin(q, p− 1)
⋃

e12···p+qPin(q, p− 1).

Theorem 5. Let Pina,b,c(p,q) be a double covering of the orthogonal group
O(p,q) of the real spaceRp,q associated with the algebra C̀p,q. The squares of
symbols a, b, c ∈ {−,+} correspond to the squares of the elements of a finite group
Aut(C`p,q) = {I,W,E,C} : a =W2, b= E2, c= C2, whereW, E, andC are the
matrices of the fundamental automorphismsA→ A?, A→ Ã, andA→ Ã? of
the algebra C̀p,q, respectively. Then over the fieldF = R in dependence on a
division ring structure of the algebra C̀p,q, there exist eight double coverings of
the orthogonal group O(p,q):

(1) A non-Cliffordian group

Pin+,+,+(p,q) ' (Spin0(p,q)¯ Z2⊗ Z2⊗ Z2)

Z2
,

exists ifK ' Rand the numbers p and q form the type p− q ≡ 0 (mod 8)
and p,q ≡ 0 (mod 4), and also if p− q ≡ 4 (mod 8) and K ' H.
The algebras C̀p,q with the ringsK ' R⊕ R, K ' H⊕H (p− q ≡
1, 5 (mod 8))admit the groupPin+,+,+(p,q) if in the direct sums there
are addendums of the type p− q ≡ 0 (mod 8)or p− q ≡ 4 (mod 8).
The types p− q ≡ 3, 7 (mod 8), K ' C admit a non-Cliffordian group
Pin+,+,+(p+ q − 1,C) if p ≡ 0 (mod 2)and q≡ 1 (mod 2). Further,
non-Cliffordian groups

Pina,b,c(p,q) ' (Spin0(p,q)¯ (Z2⊗ Z4)

Z2
,

with (a, b, c) = (+,−,−) exist if p− q ≡ 0 (mod 8), p,q ≡ 2 (mod 4)
andK ' R, and also if p− q ≡ 4 (mod 8)andK ' H. Non-Cliffordian
groups with the signatures(a, b, c) = (−,+,−) and (a, b, c) = (−,−,
+) exist over the ringK ' R (p− q ≡ 2 (mod 8))if p ≡ 2 (mod 4), q ≡
0 (mod 4)and p≡ 0 (mod 4), q ≡ 2 (mod 4), respectively, and also these
groups exist over the ringK ' H if p − q ≡ 6 (mod 8). The algebras
C`p,q with the ringsK ' R⊕ R, K ' H⊕H (p− q ≡ 1, 5 (mod 8))
admit the groupPin+,−,−(p,q) if in the direct sums there are addendums
of the type p− q ≡ 0 (mod 8)or p− q ≡ 4 (mod 8), and also admit
the groupsPin−,+,−(p,q) andPin−,−,+(p,q) if in the direct sums there
are addendums of the type p− q ≡ 2 (mod 8)or p− q ≡ 6 (mod 8).
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(2) A Cliffordian group

Pin−,−,−(p,q) ' (Spin0(p,q)¯ Q4)

Z2
,

exists ifK ' R(p− q ≡ 2 (mod 8))and p≡ 3 (mod 4), q ≡ 1 (mod 4),
and also if p− q ≡ 6 (mod 8)andK ' H. The algebras C̀p,q with
the ringsK ' R⊕ R, K ' H⊕H (p− q ≡ 1, 5 (mod 8))admit the
group Pin−,−,−(p,q) if in the direct sums there are addendums of the
type p− q ≡ 2 (mod 8) or p− q ≡ 6 (mod 8). The types p− q ≡
3, 7 (mod 8),K ' C admit a Cliffordian groupPin−,−,−(p+ q − 1,C),
if p ≡ 1 (mod 2)and q≡ 0 (mod 2). Further, Cliffordian groups

Pina,b,c(p,q) ' (Spin0(p,q)¯ D4)

Z2
,

with (a, b, c) = (−,+,+) exist ifK ' R, (p− q ≡ 2 (mod 8))and p≡
1 (mod 4), q ≡ 3 (mod 4), and also if p− q ≡ 6 (mod 8)andK ' H.
Cliffordian groups with the signatures(a, b, c) = (+,−,+) and
(a, b, c) = (+,+,−) exist over the ringK ' R, (p− q ≡ 0 (mod 8))
if p,q ≡ 3 (mod 4)and p,q ≡ 1 (mod 4), respectively, and also these
groups exist over the ringK ' H if p − q ≡ 4 (mod 8). The algebras
C`p,q with the ringsK ' R⊕ R, K ' H⊕H(p− q ≡ 1, 5 (mod 8))
admit the groupPin−,+,+(p,q) if in the direct sums there are addendums
of the type p− q ≡ 2 (mod 8)or p− q ≡ 6 (mod 8), and also admit the
groupsPin+,−,+(p,q) andPin+,+,−(p,q) if in the direct sums there are
addendums of the type p− q ≡ 0 (mod 8)or p− q ≡ 4 (mod 8).

4. THE STRUCTURE OF Pin( p,q) 6' Pin(q, p)

It is easy to see that the definitions (9) and (12) are equivalent. Moreover,
Salingaros (1981, 1982, 1984) showed that there are isomorphismsZ2⊗ Z2 '
C`1,0 andZ4 ' C`0,1. Further, sinceC`+p,q ' C`+q,p, in accordance with the def-
inition (10), it follows thatSpin(p,q) ' Spin(q, p). On the other hand, since in
a general caseC`p,q 6' C`q,p, from the definition (9) it follows thatPin(p,q) 6'
Pin(q, p) (or Pina,b,c(p,q) 6' Pina,b,c(q, p)). In connection with this, some au-
thors (Cahenet al., 1995, 1998; Choquet-Bruhatet al., 1982; De Witt-Morette,
1982, 1989; Friedrich, 1999; Kirby, 1989) used notationsPin+ ' Pin(p,q) and
Pin− ' Pin(q, p). In Theorems 4 and 5, we have established a relation between
the signatures

(p,q) = (+,+, . . . ,+︸ ︷︷ ︸
p times

,−,−, . . . ,−︸ ︷︷ ︸
q times

)
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of the spacesRp,q, and the signatures (a, b, c) of the automorphism groups ofC`p,q

and corresponding D¸abrowski groups. This relation allows to completely define
the structure of the inequalityPin(p,q) 6' Pin(q, p) (Pin+ 6' Pin−). Indeed, from
(12) and (11), it follows thatSpin0(p,q) ' Spin0(q, p), therefore, a nature of
the inequalityPin(p,q) 6' Pin(q, p) wholly lies in the double coveringCa,b,c

of the discrete subgroup. For example, in accordance with Theorem 5 for the
type p− q ≡ 2 (mod 8) with the division ringK ' R there exist the groups
Pina,b,c(p,q) ' Pin+, where double coverings of the discrete subgroup have the
form: (1) C−,−,− ' Q4, if p ≡ 3 (mod 4) andq ≡ 1 (mod 4); (2)C−,+,+ ' D4,
if p ≡ 1 (mod 4) andq ≡ 3 (mod 4); (3)C−,−,+ ' Z2⊗ Z4, if p ≡ 0 (mod 4)
andq ≡ 2 (mod 4); (4)C−,+,− ' Z2⊗ Z4, if p ≡ 2 (mod 4) andq ≡ 0 (mod 4).
Whereas the groups with opposite signature,Pin− ' Pina,b,c(q, p), have the type
q − p ≡ 6 (mod 8) with the ringK ' H. In virtue of the more wide ringK ' H,
there exists a far greater choice of the discrete subgroups for each concrete kind
of Pina,b,c(q, p). Thus,

Pina,b,c(p,q) 6' Pina,b,c(q, p)

p− q ≡ 2 (mod 8) q − p ≡ 6 (mod 8).

Further, the typep− q ≡ 1 (mod 8) with the ringK ' R⊕ R in virtue of Theo-
rems 4 and 5 admits the groupPina,b,c(p,q) ' Pin+, where the double covering
Ca,b,c adopts all the eight possible values. Whereas the opposite typeq − p ≡
7 (mod 8) with the ringK ' C admits the groupPina,b,c(q, p) ' Pin−, where
for the double coveringCa,b,c of the discrete subgroup there are only two pos-
sibilities: (1) C+,+,+ ' Z2⊗ Z2⊗ Z2, if p ≡ 0 (mod 2) andq ≡ 1 (mod 2);
(2) C−,−,− ' Q4, if p ≡ 1 (mod 2) andq ≡ 0 (mod 2). The analogous situation
takes place for the two mutually opposite typesp− q ≡ 3 (mod 8) withK ' C
andq − p ≡ 5 (mod 8) withK ' H⊕H. Therefore,

Pina,b,c(p,q) 6' Pina,b,c(q, p)

p− q ≡ 1 (mod 8) q − p ≡ 7 (mod 8);

Pina,b,c(p,q) 6' Pina,b,c(q, p)

p− q ≡ 3 (mod 8) q − p ≡ 5 (mod 8).

It is easy to see that an opposite type to the typep− q ≡ 0 (mod 8) with the
ring K ' R is the same typeq − p ≡ 0 (mod 8). Therefore, in virtue of Theo-
rems 4 and 5 double coveringsCa,b,c for the groupsPina,b,c(p,q) ' Pin+ and
Pina,b,c(q, p) ' Pin− coincide. The same is the situation for the typep− q ≡
4 (mod 8) withK ' H, which has the opposite typeq − p ≡ 4 (mod 8). Thus,

Pina,b,c(p,q) ' Pina,b,c(q, p)

p− q ≡ 0 (mod 8) q − p ≡ 0 (mod 8);
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Pina,b,c(p,q) ' Pina,b,c(q, p)

p− q ≡ 4 (mod 8) q − p ≡ 4 (mod 8).

We will call the typesp− q ≡ 0 (mod 8) andp− q ≡ 4 (mod 8), which coincide
with their opposite types,neutral types.

Example. Let us consider a structure of the inequalityPin(3, 1) 6'Pin(1, 3). The
groupsPin(3, 1) andPin(1, 3) are two different double coverings of the general
Lorentz group. These groups play an important role in physics (Carlip and De
Witt-Morette; 1998, De Witt-Morette and De Witt, 1990; De Witt-Morette and
Gwo, 1990; De Witt-Moretteet al., 1997). As follows from (9) the groupPin(3, 1)
is completely defined in the framework of the Majorana algebraC`3,1, which has
the typep− q ≡ 2 (mod 8) and the division ringK ' R. As noted previously, the
structure of the inequalityPin(p,q)'/ Pin(q, p) is defined by the double covering
Ca,b,c. From Theorems 4 and 5, it follows that the algebraC`3,1 ' M4(R) admits
one and only one groupPin−,−,−(3, 1), where a double covering of the discrete
subgroup has a formC−,−,− ' Q4. Indeed, let us consider a matrix representation
of the units ofC`3,1, using the Maple V and the CLIFFORD package developed
by AblÃamowicz (1996, 1998, 2000). Letf = 1

4(1+ e1)(1+ e34) be a primitive
idempotent of the algebraC`3,1 (prestored idempotent forC`3,1 in CLIFFORD);
then a following CLIFFORD command sequence gives:

> restart:with(Cliff4):with(double):
> dim := 4:
> eval(makealiases(dim)):
> B := linalg(diag(1,1,1,−1)):
> Clibasis := cbasis(dim):
> data := clidata(B):
> f := data[4]:
> left sbasis := minimalideal(clibasis,f,’left’):
> Kbasis := Kfield(left sbasis,f):
> SBgens := left sbasis[2]:FBgens := Kbasis[2]:
> K basis := spinorKbasis(SBgens,f,FBgens,’left’):
> for i from 1 to 4 do

E[i] := spinorKrepr(e.i., K basis[1], FBgens,′ left′)od;

E1 :=


Id 0 0 0
0 −Id 0 0
0 0 −Id 0
0 0 0 −Id

 , E2 :=


0 Id 0 0
Id 0 0 0
0 0 0 Id
0 0 Id 0

 ,
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E3 :=


0 0 Id 0
0 0 0 −Id
Id 0 0 0
0 −Id 0 0

 , E4 :=


0 0 −Id 0
0 0 0 Id
Id 0 0 0
0 −Id 0 0

 . (65)

It is easy to see that the matrices (65) build up a basis of the form (31). Since the
conditionpq ≡ 1 (mod 2) is satisfied for the algebraC`3,1, the automorphism group
Aut(C`3,1) is non-Abelian. In accordance with (15), the matrixE should commute
with a symmetric part of the basis (65) and anticommute with a skewsymmetric
part of (65). In this case, as follows from (32)–(35) and (65), the matrixE is a
product ofp = 3 symmetric matrices, that is,

E = E1E2E3 =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 .
Further, matrices of the automorphisms? and̃? for the basis (65) have a form

W = E1E2E3E4 =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , C = EW =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 .
Thus, a group of the fundamental automorphisms of the algebraC`3,1 in the matrix
representation is defined by a finite group{I,W,E,C} ∼ {I , E1234, E123, E4}. The
multiplication table of this group has a form

I E123 E4 I W E C

I I E1234 E123 E4 I I W E C

E1234 E1234 −I E4 −E123 ∼ W W −I C −E

E123 E123 −E4 −I E1234 E E −C −I W

E4 E4 E123 −E1234 −I C C E −W −I

(66).

E1234

From the table, it follows thatAut+(C`3,1) ' {I,W,E,C} ' Q4/Z2 and, therefore,
the algebraC`3,1 admits a Cliffordian groupPin−,−,−(3, 1) (Theorem 5). It is easy
to verify that the double coveringC−,−,− ' Q4 is an invariant fact for the algebra
C`3,1, that is,C−,−,− does not depend on the choice of the matrix representation.
Indeed, for each of the two commuting elements of the algebraC`3,1, there exist
four different primitive idempotents that generate four different matrix representa-
tions ofC`3,1. The invariability of the previously mentioned fact is easily verified
with the help of a procedurecommutingelements of the CLIFFORD package,
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which allows to consider in sequence all the possible primitive idempotents of the
algebraC`3,1 and their corresponding matrix representations.

Now, let us consider discrete subgroups of the double coveringPin(1, 3). The
groupPin(1, 3), in turn, is completely constructed within the spacetime algebra
C`3,1 that has the opposite (in relation to the Majorana algebraC`3,1) typep− q ≡
6 (mod 8) with the division ringK ' H. According to Wedderburn–Artin theorem,
in this case there is an isomorphismC`3,1 ' M2(H). The following CLIFFORD
command sequence allows to find matrix representations of the units of the algebra
C`3,1 for a prestored primitive idempotentf = 1

2(1+ e14) :

> restart:with(Cliff4):with(double): (67)

> dim := 4: eval(makealiases(dim): (68)

> B := linalg(diag(1,-1,-1,-1)): (69)

> clibasis := cbasis(dim): (70)

> data := clidata(B): f := data[4]: (71)

> left sbasis := minimalideal(clibasis, f,
,

left
,
): (72)

> Kbasis := Kfield(left sbasis, f): (73)

> SBgens := left sbasis [2]: FBgens := Kbasis[2]: (74)

> K basis := spinorKbasis (SBgens, f, FBgens,
,

left
,
):(75)

> for i from 1 to 4 do (76)

E[i] := spinorKrepr(e.i.,K basis[1],FBgens,
,

left
,
)od; (77)

E1 : =
[

0 Id
Id 0

]
, E2 :=

[
e2 0
0 −e2

]
,

(78)

E3 : =
[

e3 0
0 −e3

]
, E4 :=

[
0 −Id
Id 0

]
.

At this point, the division ringK ' H is generated by a set{1, e2, e3, e23} '
{1, i, j , k}, wherei, j , andk are well-known quaternion units. The basis (78) con-
tains three symmetric matrices and one skewsymmetric matrix. Therefore, in ac-
cordance with (15) and (41)–(46), the matrix of the antiautomorphismA→ Ã is
a product of symmetric matrices of the basis (78). Thus,

W = E1E2E3E4 =
(

k 0
0 −k

)
, E = E1E2E3 =

(
0 k
k 0

)
,

(79)

C = EW =
(

0 1
−1 0

)
.
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It is easy to verify that a set of the matrices (79) added by the unit matrix forms
the non-Abelian groupAut+(C`1,3) ' Q4/Z2, with a multiplication table of the
form (66). Therefore, the spacetime algebraC`1,3 admits the Cliffordian group
Pin−,−,−(1, 3), where a double covering of the discrete subgroup has the form
C−,−,− ' Q4. However, as follows from Theorem 4, in virtue of the more wide
ringK ' H the groupPin−,−,−(1, 3) is not the only possible group for the alge-
braC`1,3 ' M2(H). Indeed, looking over all the possible commuting elements of
the algebraC`1,3 we find with the help of the procedurecommutingelements
that
> L1 := commutingelements(clibasis);

L1 := [e1] (80)

> L2 := commutingelements(remove(member,clibasis,L1));

L2 := [e12] (81)

> L3 := commutingelements(remove(member,clibasis,[op(L1),
op(L2)]));

L3 := [e13] (82)

> L4 := commutingelements(remove(member,clibasis,[op(L1),
op(L2),op(L3)]));

L4 := [e14] (83)

> L5 := commutingelements(remove(member,clibasis,[op(L1),
op(L2),op(L3),op(L4)]));

L5 := [e234] (84)

> f := cmulQ((1/2)*(Id + e2we3we4);

f := 1

2
I d + 1

2
e234 (85)

> type(f,primitiveidemp);

true (86)

It is easy to verify that primitive idempotents1
2(1± e1), 1

2(1± e12), 1
2(1± e13),

and1
2(1± e14) constructed by means of the commuting elementse1,e12,e13, ande14

generate matrix representations that give rise to the groupAut+(C`1,3) ' Q4/Z2.
However, the situation changes for the elemente234and the corresponding primitive
idempotent12(1+ e234) ( 1

2(1− e234)). Indeed, executing the commands (85) and
(86) and subsequently the commands (72)–(77), we find that
> for i from 1 to 4 do

E[i] := spinorKrepr(e.i., K basis[1], FBgens,, left,)od;
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E1 : =
[

0 I d
Id 0

]
, E2 :=

[
e2 0
0 −e2

]
,

(87)

E3 : =
[
e34 0
0 −e34

]
, E4 :=

[
e4 0
0 −e4

]
,

where the division ringK ' H is generated by a set{1, e2, e4, e24} ' {1, i, j , k}.
The basis (87) consists of symmetric matrices only. Therefore in accordance with
(15), the matrixE should commute with all the matrices of basis (87). It is obvious
that this condition is satisfied only ifE is proportional to the unit matrix (recall that
any element of the automorphism group may be multiplied by an arbitrary factor
η ∈ F, in this caseF = R). Further, a set of the matricesW = E1E2E3E4, E ∼ I,
and C = EW added by the unit matrix forms a finite group with the following
multiplication table

I W E C

I I W E C

W W −I C −E

E E C I W

C C −E W −I

.

As follows from the table, we have in this case the Abelian groupAut−(C`1,3) ' Z4

with the signature (−,+,−). Thus, the spacetime algebraC`1,3 admits the group
Pin−,+,−(1, 3), where a double covering of the discrete subgroup has the form
C−,+,− ' Z2⊗ Z4.

This fulfilled analysis explicitly shows a difference between the two double
coveringsPin(3, 1) andPin(1, 3) of the Lorentz group. Since double coverings
of the connected components of both groupsPin(3, 1) andPin(1, 3) are isomor-
phic, Spin0(3, 1)' Spin0(1, 3), the nature of difference between them consists
in the concrete form and number of the double coveringCa,b,c of the discrete
subgroups. So, for the Majorana algebraC`3,1, all the existing primitive idem-
potents1

4(1± e1)(1± e34), 1
4(1± e1)(1± e24), 1

4(1± e2)(1± e14), 1
4(1± e3)(1±

e134), and 1
4(1± e34)(1± e234) generate 20 matrix representations, each of which

gives rise to the double coveringC−,−,− ' Q4. On the other hand, for the space-
time algebraC`1,3 primitive idempotents1

2(1± e14), 1
2(1± e1), 1

2(1± e12), and
1
2(1± e13) generate eight matrix representations withC−,−,− ' Q4, whereas re-
maining two primitive idempotents12(1± e234) generate matrix representations
with C−,+,− ' Z2⊗ Z4.

Remark. Physicists commonly use a transition from some given signature to its
opposite (signature change) by means of a replacementEi → iEi (so-called Wick
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rotation). However, such a transition is unsatisfactory from a mathematical view-
point. For example, we can use the replacementEi → iEi for a transition from the
spacetime algebraC`1,3 ' M2(H) to the Majorana algebraC`3,1 ' M4(R) since
i ∈ M2(H), whereas an inverse transitionC`3,1→ C`1,3 can not be performed by
the replacementEi → iEi , sincei 6∈ M4(R). The mathematically correct alternative
to the Wick rotation is a tilt-transformation introduced by Lounesto (1993). The
tilt-transformation is expressed by a mapab→ a+b+ + b+a− + b−a+ − b−a−,
wherea±, b± ∈ C`±p,q. The further developing of the tilt-transformation and its
application for a formulation of physical theories in the spaces with different sig-
natures has been considered in the recent paper by Miralles (in press).

5. DISCRETE TRANSFORMATIONS AND BRAUER–WALL GROUPS

The algebraC` is naturallyZ2-graded. LetC`+ (correspondinglyC`−) be
a set consisting of all even (correspondingly odd) elements of the algebraC`.
The setC`+ is a subalgebra ofC`. It is obvious thatC` = C`+ ⊕ C`−, and
alsoC`+C`+ ⊂ C`+, C`+C`− ⊂ C`−, C`−C`+ ⊂ C`−, C`−C`− ⊂ C`+. A de-
gree deg deta of the even (correspondingly odd) elementa ∈ C` is equal to 0
(correspondingly 1). LetA and B be the two associativeZ2-graded algebras
over the fieldF; then a multiplication of homogeneous elementsa′ ∈ A and
b ∈B in a graded tensor productA⊗̂b is defined as follows: (A⊗ b)(A′ ⊗ b

′) =
(−1)degb degA

′
AA

′ ⊗ bb
′. The graded tensor product of the two graded cen-

tral simple algebras is also graded central simple [Wall, 1964, Theorem 2]. The
Clifford algebraC`p,q is central simple ifp− q 6≡ 1, 5 (mod 8). It is known
that for a Clifford algebra with odd dimensionality, the isomorphisms are as fol-
lows: C`+p,q+1 ' C`p,q andC`+p+1,q ' C`q,p (Porteous, 1969; Rashevskii, 1957).
Thus,C`+p,q+1 and C`+p+1,q are central simple algebras. Further, in accordance
with Chevalley Theorem (Chevalley, 1955), for the graded tensor product there is
an isomorphismC`p,q⊗̂C`p′,q′ ' C`p+p′,q+q′ . Two algebrasC`p,q andC`p′,q′ are
said to be of the same class ifp+ q′ ≡ p′ + q (mod 8). The graded central simple
Clifford algebras over the fieldF = R form eight similarity classes, which, as it
is easy to see, coincide with the eight types of algebrasC`p,q. The set of these 8
types (classes) forms a Brauer–Wall groupBWR (Wall, 1964) that is isomorphic
to a cyclic groupZ8. Thus, the algebraC`p,q is an element of the Brauer–Wall
group, and a group operation is the graded tensor product⊗̂. A cyclic structure
of the groupBWR ' Z8 may be represented on the Trautman diagram (spino-
rial clock) (Budinich and Trautman, 1987, 1988) (Fig. 1) by means of a transition
C`+p,q

h→C`p,q (the round on the diagram is realized by an hour-hand). At this point,
the type of the algebra is defined on the diagram by an equalityq − p = h+ 8r ,
whereh ∈ {0, . . . ,7}, r ∈ Z.

It is obvious that a group structure overC`p,q, defined byBWR ' Z8, im-
mediately relates with the Atiyah–Bott–Shapiro periodicity (Atiyahet al., 1964).
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Fig. 1. The Trautman diagram for the Brauer–Wall groupBWR ' Z8.

In accordance with Atiyah (1964), the Clifford algebra over the fieldF = R is
modulo 8 periodic:C`p+8,q ' C`p,q ⊗ C`8,0(C`p,q+8 ' C`p,q ⊗ C`0,8).

Coming back to Theorem 4, we see that for each type of algebraC`p,q there
exists some set of the automorphism groups. If we take into account this relation,
then the cyclic structure of a generalized groupBWa,b,c

R would look as follows
(Fig. 2). First of all, the semi-simple algebrasC`p,q with the ringsK ' R⊕ R
andK ' H⊕H (p− q ≡ 1, 5 (mod 8)) form an axis of the eighth order, which
defines the cyclic groupZ8. Further, the neutral typesp− q ≡ 0 (mod 8) (K ' R)
and p− q ≡ 4 (mod 8) (K ' H), which in common admit the automorphism
groups with the signatures (+, b, c), form an axis of the fourth order corresponding
to the cyclic groupZ4. Analogously, the two mutually opposite typesp− q ≡
2 (mod 8) (K ' R) and p− q ≡ 6 (mod 8) (K ' H), which in common admit
the automorphism groups with the signatures (−, b, c), also form an axis of the
fourth order. Finally, the typesp− q ≡ 3, 7 (mod 8) (K ' C) with the (+,+,+)
and (−,−,−) automorphism groups form an axis of the second order. Therefore,
BWa,b,c

R ' Z2⊗ (Z4)2⊗ Z8, where (Z4)2 = Z4⊗ Z4.
Further, over the fieldF = C, there exist two types of the complex Clifford

algebras:Cn andCn+1 ' Cn ⊕ Cn. Therefore, a Brauer–Wall groupBWC acting
on a set of these two types is isomorphic to the cyclic groupZ2. The cyclic structure
of the groupBWC ' Z2 may be represented on the following Trautman diagram
(Fig. 3) by means of a transitionC+n

h→Cn (the round on the diagram is realized by
an hour-hand). At this point, the type of algebra on the diagram is defined by an
equalityn = h+ 2r , whereh ∈ {0, 1}, r ∈ Z.

It is obvious that a group structure overCn, defined by the groupBWC ' Z2,
immediately relates with a Modulo 2 periodicity of the complex Clifford algebras
(Atiyah et al., 1964; Karoubi, 1979):Cn+2 ' Cn ⊗ C2.
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Fig. 2. The cyclic structure of the generalized groupBWa,b,c
R .

From Theorem 2, it follows that the algebraC2m ' M2m(C) admits the auto-
morphism groupAut−(C2m) ' Z2⊗ Z2 with the signature (+,+,+) if m is even,
and the groupAut+(C2m) ' Q4/Z2 with the signature (−,−,−) if m is odd. In
connection with this, the second complex typeC2m+1 ' C2m⊕ C2m also admits

Fig. 3. The Trautman diagram for the Brauer–Wall groupBWC ' Z2.
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Fig. 4. The cyclic structure of the generalized groupBWa,b,c
C .

both the previously mentioned automorphism groups. Therefore, if we take into
account this relation, the cyclic structure of a generalized groupBWa,b,c

C would
look as follows (Fig. 4). Both complex typesn ≡ 0 (mod 2) andn ≡ 1 (mod 2)
form an axis of the second order; therefore,BWa,b,c

C ' Z2.
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