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An algebraic description of basic discrete symmetries (space reersate reversal

T, and their combinatiof? T) is studied. Discrete subgroups of orthogonal groups of
multidimensional spaces over the fields of real and complex numbers are considered in
terms of fundamental automorphisms of Clifford algebras. In accordance with a divi-
sion ring structure, a complete classification of automorphism groups is established for
the Clifford algebras over the field of real numbers. The correspondence between eight
double coverings (Bhrowski groups) of the orthogonal group and eight types of the real
Clifford algebras is defined with the use of isomorphisms between the automorphism
groups and finite groups. Over the field of complex numbers there is a correspondence
between two nonisomorphic double coverings of the complex orthogonal group and two
types of complex Clifford algebras. It is shown that these correspondences associate
with a well-known Atiyah—Bott—Shapiro periodicity. Generalized Brauer—Wall groups
are introduced on the extended sets of the Clifford algebras. The structure of the in-
equality between the two Clifford—Lipschitz groups with mutually opposite signatures
is elucidated. The physically important case of the two different double coverings of
the Lorentz groups is considered in details.

1. INTRODUCTION

In 1909, Minkowski showed that a causal structure of the world is described
by a 4-dimensional pseudo-Euclidean geometry. In accordance with Minkowski
(1909), the quadratic forx? + y? + z2 — ¢t remains invariant under the action
of linear transformations of the four variabbesy, z, andt, which form a general
Lorentz groupG. As known, the general Lorentz grop consists of an own
Lorentz groupGg and three reflections (discrete transformatioRs), andPT,
whereP andT are space and time reversal, &1s a so-called full reflection. The
discrete transformatiori3, T, andPT added to an identical transformation form a
finite group. Thus, the general Lorentz group may be represented by a semidirect
productGo © {1, P, T,PT}. Analogously, an orthogonal gro@( p, q) of the real
spaceR” Y is represented by the semidirect product of a connected component
Oo(p, q) and a discrete subgroup.
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Further, a double covering of the orthogonal graDfp, q) is a Clifford—
Lipschitz groupPin(p, g) which is completely constructed within a Clifford alge-
braC¢p q. In accordance with squares of elements of the discrete subgaosp (

P2, b=T? c = (PT)?, there exist eight double coveringsgBrowski groups,
Dabrowski, 1988) of the orthogonal group defined by the signatwgs, €),
wherea, b, c € {—, +}. Such in brief is a standard description scheme of the dis-
crete transformations.

However, in this scheme there is one essential flaw. Namely, the Clifford—
Lipschitz group is an intrinsic notion of the algelité, 4 (a set of all invertible
elements ofC¢,, o), whereas the discrete subgroup is introduced into the standard
scheme in an external way, and the choice of the signaduite ¢) of the discrete
subgroup is not determined by the signature of the sfdt® Moreover, it is
suggested by default that for any signatuped) of the vector space, there exist
all eight kinds of the discrete subgroups.

In the recent paper Varlamov (1999), to assimilate the discrete transforma-
tions into an algebraic framework, it has been shown that elements of the discrete
subgroup correspond to fundamental automorphisms of the Clifford algebras. The
set of the fundamental automorphisms added to an identical automorphism forms
a finite group, for which in virtue of the Wedderburn—Artin theorem there exists
a matrix representation. The main subject of Varlamov (1999) is the study of the
homomorphisnC,,; — C, and its application in physics, whet is a Clifford
algebra over the field of complex numbétrs= C.

The main goal of the present paper is a more explicit and complete formu-
lation (in accordance with a division ring structure of the algel@gg,) of the
preliminary results obtained in Varlamov (1999). The classification of automor-
phism groups of Clifford algebras over the field of real humbges R and a
correspondence between eighikﬂ)gwskiPin"j‘*ch coverings of the grou@(p, q)
and eight types o€¢, 4 are established in Section 3. It is shown that the division
ring structure ofC¢,  imposes hard restrictions on the existence and choice of the
discrete subgroup, and the signatuaelf, c) depends upon the signature of the
underlying spac&P9. On the basis of obtained results, a nature of the inequality
Pin(p, q) 2 Pin(q, p) is elucidated in Section 4. As known, the Lorentz groups
0O(3,1) and O(1, 3) are isomorphic, whereas their double coveriRgs(3, 1)
andPin(1, 3) are nonisomorphic. With the help of Maple V package CLIFFORD
(Abtamowicz, 1996, 2000), a structure of the inequaitg(3, 1) 2~ Pin(Z, 3) is
considered as an example that is, all the possible spinor representations of a Ma-
jorana algebréC(s 1 and a spacetime algeb@t; 3, and corresponding automor-
phism groups, are analysed in detail. In connection with this, it should be noted
that the general Lorentz group is a basis for (presently most profound in both math-
ematical and physical viewpoints) Wigner's definition of an elementary particle
as an irreducible representation of the inhomogeneous Lorentz group (Wigner,
1964).
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It is known that the Clifford algebras are modulo 8 periodic over the field of
real numbers and modulo 2 periodic over the field of complex numbers (Ativah—
Bott-Shapiro periodicity, Atiyalet al., 1964). In virtue of this periodicity, a struc-
ture of the Brauer—Wall group (Budimich and Trautman, 1988; Lounesto, 1997;
Wall, 1964) is defined on the set of the Clifford algebras, where a group element is
C¢, and a group operation is a graded tensor product. The Brauer—Wall group over
the fieldF = Risisomorphicto a cyclic group of the eighth order, and over the field
F = C to a cyclic group of the second order. Generalizations of the Brauer—Wall
groups are considered in Section 5. The Trautman diagrams of the generalized
groups are defined as well.

2. PRELIMINARIES

In this section, we will consider some basic facts about Clifford algebras and
Clifford—Lipschitz groups, which we will widely use below. LEtbe a field of
characteristic Of = R, F = C), whereR andC are the fields of real and complex
numbers, respectively. A Clifford algeb@t over a fieldF is an algebra with 2
basis elementgy (unit of the algebrag, e, . . ., e, and products of the one-index
element®,;,.i = 6,8, - - - 6,. Over the field" = R, the Clifford algebra denoted
asCt q, where the indicep andq correspond to the indices of the quadratic form

—_— 2 “ .. 2—...— 2
Q=x1+ + X5 Xpiq

of a vector spac&/ associated witlC¢,, 4. The multiplication law ofC¢ 4 is
defined by the following rule:

€=0(@-i)e, ee=-ge8a, 1)
where
-1 ifn<0,
o(n) = {+1 ifn> 0. @

The square of a volume element= e;».., (N = p + q) plays an important role
in the theory of Clifford algebras,

2 |-1 ifp—9=2367 (modS8) 3)
@ =141 ifp-q=0,1,45 (mod8)

A centerZ, q of the algebraC¢, 4 consists of the unity and the volume element
. The element = e1,..., belongs to a center whemis odd. Indeed,

€12.n8 = (—1)" o (q — i)e12i 1411
820 = (—1) o (q — i)er2.i—ti+1-n,
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thereforew € Z, g ifand only ifn —i =i — 1 (mod 2), that isn is odd. Further,
using (3) we obtain

2 _ 1 ifp—q=0,2,4,6 (mod8)
P97 1,0 ifp—q=1,357 (modS8)

In Clifford algebraC¢ there exist for fundamental automorphisms.

(4)

(1) Identity: An automorphismd — A ande — €.
This automorphism is an identical automorphism of the alg€lrad is
an arbitrary element ot¢.

(2) Involution An automorphism4 — A* andg — —g.
In more details, for an arbitrary elemedte C¢ there exists a decom-
position A = A’ + A”, where A’ is an element consisting of homoge-
neous odd elements, adl’ is an element consisting of homogeneous
even elements, respectively. Then the automorphism A* is such
that the elemenid” is not changed, and the eleme#t changes sign:
A* = -A' + A”. If Ais ahomogeneous element, then

A" = (-1)FA, (5)
wherek is a degree of the element. Itis easy to see that the automorphism
A — A* may be expressed via the volume element e>..pq:

A = wAw™?, (6)

wherew™! = (—1)('%(5”71)@ Whenk is odd, for the basis elements

&,i,-i, the sign changes, and whkiis even, the sign is not changed.
(3) ReversionAn antiautomorphismd — A ande, — €.

The antiautomorphismd — A is areversion of the elemewt, that is the

substitution of each basis element,..., € A by the elemeng,;, ,...i,:

Kk-1)
akik—l"'il = (_1) 2 alizmik-

Therefore, for anyd e Ctj 4, we have

A= (-1 A @)
(4) Conjugation An antiautomorpisn4d — A* andg — —6.
This antiautomorphism is a composition of the antiautomorphisr
A with the automorphismd — A*. In the case of a homogeneous ele-
ment, from the formulae (5) and (7), it follows

A= (1) A 8)

The Lipschitz groupl'p 4, also called the Clifford group, introduced by
Lipschitz (1886) may be defined as the subgroup of invertible elensaitshe
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algebraCe

_ + - . -1 .
Tpq={seCt ,UCl,, | ¥x € RP9, sxs™* € RP}.

The setl'} , = T'pqNCEy, is called thespecial Lipschitz grougChevalley,
1955).

Let N:Clpq— Clpq, N(X)=xX. If x e RPY, then N(x) = x(—x) =
—x% = —Q(X).
Further, the group', o has a subgroup

Pin(p,q) = {s € Ipq | N(s) = +1}. )
Analogously,a spinor groupSpin(p, q) is defined by the set
Spin(p,q) = {se '}, | N(s) = £1}. (10)

Itis obvious thaSpin(p, q) = Pin(p, q) N Cﬁ;g,q. The grougSpin(p, q) contains
a subgroup

Spin,(p, g) = {s € Spin(p, q) | N(s) = 1}. (11)

Itis easy to see that the grou@¥ p, ), SQ(p, q), andSQO, (p, q) are isomorphic,
respectively, to the following quotient groups

O(p,q) = Pin(p,q)/Zz,  SQA(p, q) = Spin(p, q)/Z>,

SO (p, q) = Spin(p, 4)/Za,

where the kernelZ, = {1, —1}. Thus, the group®in(p, q), Spin(p, q), and
Spin, (p,q) are the double coverings of the grougd(p,q), SQ and
SO, (p, q), respectively.

On the other hand, there exists a more detailed version d?ithgroup (9)
proposed by @browski in 1988. In general, there are eight double coverings of
the orthogonal grou@(p, q) (Blau and apbrowski, 1989; Rbrowski, 1988):

pa,b.c . F)inﬁl-,bac(p7 q) — O(p,q),

wherea, b, ¢ € {+, —}. As known, the grou®(p, q) consists of four connected
components: identity-connected compon®g(p, q), and three components cor-
responding to parity revers8, time reversall, and the combination of these two
PT, thatis,O(p, q) = (Oo(p, 4)) U P(Qo(p. 4)) U T(Qo(p, )) U PT(Oo(p, q)).
Further, since the four-element group (reflection gradpP, T, PT} is isomor-
phicto the finite groufd, ® Z, (Gauss—Klein veergruppe, Salingaros, 1981, 1984),
thenO(p, g) may be represented by a semidirect prodD¢p, q) >~ Op(p, q) ©

(Z, ® Z,). The signs of, b, andc correspond to the signs of the squares of the
elements inPin®®¢(p, q) that cover space reflectioR, time reversalTl, and a
combination of these tw®T (a = —P?,b = T2, ¢ = —(PT)?) in Dabrowski's
(1988) notation ané = P?, b = T2, ¢ = (PT)? in Chamblin’s (1994) notation,
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which we will use below). An explicit form of the grolin®<(p, q) is given by

the following semidirect product

(Sping(p, 9) © C*")
Zo ’

whereC?P¢ are the four double coverings @b ® Z,. All the eight double cov-

erings of the orthogonal group(p, q) are given in the following table:

PinP<(p, q) ~

(12)

abc cabe Remark
+ + + Zo@Zo@Zy | PT=TP
+-—— | ZooZ4 PT=TP
—+— | L2®Za PT=TP
- =+ | Zo®Z4 PT=TP
——— | Q4 PT=-TP
- ++4+ | D4 PT=-TP
+ -+ | Ds4 PT=-TP
++— | Ds PT=-TP

HereZ,4, Q4, andD,4 are complex, quaternion, and dihedral groups, respectively.
According to Dabrowski (1988) the groupin®™¢(p, q) satisfying the condition
PT = —TPis calledCliffordian, andnon-CliffordianwhenPT = TP.

One of the most fundamental theorems in the theory of associative algebras
is as follows:

Theorem 1 (Wedderburn—Artin). Any finite-dimensional associative simple al-
gebraA over the fieldF is isomorphic to a full matrix algebrd,(K), where n is

a natural number defined unambiguously, @&d division ring defined with an
accuracy of isomorphism.

In accordance with this theorem, all properties of the initial alg&irare
isomorphically transferred to the matrix algelria(K). Later on we will widely
use this theorem. In its turn, for the Clifford algel&té, 4 over the fieldF = R
we have an isomorphis@¢p q ~ Endc(Ip,q) ~ Man(K), wherem = 224, 1, o =
Clpqf is a minimal left ideal ofC¢, o, andK = fClp 4 f is a division ring of
Clpq. The primitive idempotent of the algeb@ , 4 has a form

1 1 1
f= E(lieal)i(lj: eotz) T é(lieak)’
wheree,,, &,,, ..., &, are commuting elements with square 1 of the canonical

basis ofC¢, 4 generating a group of ordeK 2The values ok are defined by a
formulak = q — rq_p, wherer; are the Radon—Hurwitz numbers (Hurwitz, 1923,
Radon, 1922), values of which form a cycle of period;8z = r; + 4. The values
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of allr; are
i 01 2 3 456 7
rr 01 2 2 3 3 3 3

All the Clifford algebrasC¢,  over the fieldF = R are divided into eight different
types with the following division ring structure:

I. Central simple algebras.
(1) Two typesp — q = 0, 2 (mod 8), with a division rindk ~ R.
(2) Two typesp — q = 3, 7 (mod 8), with a division rindK ~ C.
(3) Two typesp — q = 4, 6 (mod 8), with a division ringk ~ H.
II. Semisimple algebras.
(4) Thetypep — g = 1 (mod 8), with a double division ring ~ R & R.
(5) The typep — g =5 (mod 8), with a double quaternionic division
ring K >~ H & H.

Over the fieldF = C there is an isomorphisrfl, >~ Mx2(C) and there are two
different types of complex Clifford algebr&%,: n = 0 (mod 2) anch = 1 (mod 2).

In virtue of the Wedderburn—Artin theorem, all fundamental automorphisms
of C¢ are transferred to the matrix algebra. Matrix representations of the funda-
mental automorphisms @f, was first obtained by Rashevskiiin 1955 (Rashevskii,
1955): (1) InvolutionA* = WAW 1, whereW is a matrix of the automorphism
(matrix representation of the volume element (2) ReversionA = EATEL,
whereE is a matrix of the anuautomorphlsmsa'usfylng the conditiong;E —
E&T =0 andE" = = y(e) are matrix representations of the
units of the algebrﬂ), (3) Conjugation :A* = CATCL, whereC = EWT is
a matrix of the antiautomorphis#satisfying the condltlon€8T +&C=0and
T =(-)"7’C.

In the recent paper Varlamov (1999), it has been shown that space rever-
sal P, time reversall', and combinatiorPT correspond to the fundamental au-
tomorphisms4d — A*, A — A, and A — A* respectively. Moreover, there is
an isomorphism between the discrete subgrgu®, T, PT} ~ Z, ® Z» (P? =
T2 = (PT)> =1, PT= TP) of O(p, q) and an automorphism group A@{) =
{Id, ,7, %}:

df« |~ 1|lep | TP
dffd]«[~ T+ N ER R
sl |z~ |~|PfP]|2]fP|T
~ o F |« T T [PT|21]|P
s~ |+ ]| prifpr| TP |1
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Further, in the cas®? = T2 = (PT)? = 1 andPT = —TP, there is an isomor-
phism between the groud, P, T, PT} and an automorphism grouxut(C¢) =
{I, W, E, C}. So, for the Dirac algebr&, in the canonical-basis, there exists
a standard (Wigner) representati®h= yp and T = y,y3 (Berestetskiiet al,
1982), therefore{l, P, T, PT} = {1, y0, y1¥3, Yoy1Y3}. On the other hand, in the
y-basis, an automorphism group @f has a formAut(C4) = {I, W, E, C} =
{1, yoy1y2¥3, Y13, Yoy2}. Ithas been shown (Varlamov, 1999) thatP, T, PT} =
{1, 0, y1¥3, Yoy1ys} = Aut(Cy) >~ Z4, WhereZy is a complex group with the sig-
nature ¢, —, —). Generalizations of these results onto the algetitaare con-
tained in the following two theorems:

Theorem 2 (Varlamov, 1999). LeAut(C,) = {I, W, E, C} be a group of the fun-
damental automorphisms of the algefita(n = 2m), whereW = £1&> - - - EmEmy1
Emrz - Eom E=61& - En, andC = Enr1&mrz -+ - Eom if M =1 (mod 2) and
E=C&n1Ems2 - Eom, C=&E-- - Enifm=0 (mod 2) Let Aut_((Cn) and
Aut, (Cy) be the automorphism groups, in which all the elements com¢nute

0 (mod 2))and anticommutém = 1 (mod 2)) respectively. Then over the field
F = C, there exist only two non-isomorphic groupsut_(C,) ~ Z, ® Z, with
the signaturd+-, +, +) if n = 0, 4 (mod 8)andAut, (C,) =~ Q4/Z, with the sig-
nature(—, —, —) if n = 2, 6 (mod 8)

Theorem 3 (Varlamov, 1999). LePin®"¢(n, C) be a double covering of the
complex orthogonal group (@, C) of the spaceC" associated with the complex
algebraC,. A dimensionality of the algebr&, is even(n = 2m), squares of
the symbols &, ¢ € {—, +} correspond to squares of the elements of the finite
group Aut = {I, W, E, C}: a= W?, b= E?, ¢ = C?, whereW,E, and C are the
matrices of the fundamental automorphisss> A*, A — A, and A — A* of

Ch, respectively. Then over the fiekl= C, for the algebraC, there are two
non-isomorphic double coverings of the grougnQC):

(1) A non-Cliffordian group

(Sping(n, C) © Z2 @ Zz @ Zy)

Pin™™*(n, C) ~
(n.) >

ifn = 0,4 (mod 8)
(2) A Cliffordian group

(Sping(n, C) © Q)
Zo ’

Pin™™7(n,C) ~

ifn = 2,6 (mod 8)
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3. DISCRETE SYMMETRIES OVER THE FIELD F=R

Theorem 4. Let Clp4 be a Clifford algebra over a field® =R and let
Aut(Ctp q) = {I, W, E, C} be a group of fundamental automorphisms of the alge-
bra C¢p, 4. Then for eight types of the algebrag £, there exist, depending upon
a division ring structure of €, q, following isomorphisms between finite groups
and groupsAut(C¢, o) with different signatureéa, b, c), where ab, c € {—, +}:

)

)

K ~ R, types p— g =0, 2 (mod 8)

If E=CEpr1€pra---Eprg and C=E1&---Ep, then Abelian groups
Aut_(Clp q) >~ Z; ® Zwiththe signaturé-+, +, +) andAut_(Clp q) =~
Z4 with the signaturg+, —, —) exist at pg =0 (mod 4)and pq =
2 (mod 4) respectively, for the type pgq =0 (mod 8) and also
Abelian groupsAut_(Cl,q) =~ Z4 with the signature(—, —, +) and
Aut_(Clpq) ~ Zswiththe signaturg—, +, —) exist at p= 0 (mod 4)
g =2 (mod 4)and p= 2 (mod 4) q = 0 (mod 4)for the type p—q =
2 (mod 8) respectively.

If E=61&---& and C = Ep1€pia- - Epiq, then non-Abelian
groups Aut,(Clpq) ~ Da/Z, with the signature (+, —, +) and
Aut(Clp q) = Da/Z; with the signaturg(+, 4+, —) exist at pg =3
(mod 4)and pg=1 (mod 4) respectively, for the type pq=0
(mod 8) and also non-Abelian groupaut,(Cfpq) =~ Qa/Z, with
(=, —, =) and Aut(Clpq) =~ D4/Z, with (—, +, +) exist at p=3
(mod 4) gq=1 (mod 4)and p=1 (mod 4) g= 3 (mod 4)for the
type p— q = 2 (mod 8) respectively.

K ~ H, types p— q = 4, 6 (mod 8)

If E=¢&j,&,- - & is a product of k skewsymmetric matrices (among
which | matrices have a squarel and t matrices have a squarel)
andC = ¢&.&,---&,,,, is a product of p+-q — k symmetric matrices
(among which h matrices have a squaré and g have a square-l),
then at k= 0 (mod 2)for the type p— q = 4 (mod 8)there exist Abelian
groupsAut_(Clp q) = Zr Q Zp with (+, +, +) and Aut_(Clp q) =~ Zs
with (+, —, =) ifl —t,h—g=0,1,4,5(mod 8)and | -t, h— g =
2,3, 6,7 (mod 8) respectively. And also atx 0 (mod 2)for the type
p—qg =6 (mod 8)there existAut_(C¢p q) = Z4 with (—, +, —) and
Aut_(Clp q) >~ Zswith(—, —, +) ifl —=t=0,1,4,5(mod8) h—g=
2,3,6,7 (mod 8)and |-t=2,3,6,7 (mod 8 h—g=0,1,4,5
(mod 8) respectively.

Inversely, ifE = &,&,--- &, is @ product of p+q —k sym-
metric matrices andC = &,&j, - - - €, is a product of k skewsymmet-
ric matrices, then at k=1 (mod 2)for the type p— g =4 (mod 8)
there exist non-Abelian groupsut(Ctpq) >~ Da/Z, with (+, —, +)
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andAut; (Clp q) = Da/Zp with (+, 4+, =) ifh —g =2, 3,6, 7 (mod 8)
| -t=0,1,4,5(mod8%andh—g=0,1,4,5(mod8)l —t =2, 3,6,
7 (mod 8) respectively. And also at% 1 (mod 2)for the type p—
g = 6 (mod 8)there existAut,(Clyq) =~ Qa/Z, with (—, —, —) and
Aut;(Clpq) = Da/Zowith(—, +, +)ifh — g, =t =2, 3,6, 7(mod 8)
andh—g,l —t=0,1, 4,5 (mod 8) respectively.

B K~ReR K~Ha H, types p—g= 1,5 (mod 8)
For the algebras @  of the types p-q= 1,5 (mod 8)there exist
Abelian automorphism groups with the signatuges —, +), (—, +, —)
and non-Abelian automorphism groups with the signatres—, —),
(=, +, +). Correspondingly, for the algebragg of the types p- g =
1,5 (mod 8)there exist Abelian groups withy-, +, +), (+, —, —) and
non-Abelian groups witl{+, —, +), (+, +, —). In a general case for
Clp,q, the types p-g=1,5 (mod 8)admit all eight automorphism
groups.

(4) K=C,types p—q=3,7(mod 8)
The types p-gq=3,7 (mod 8) admit the Abelian group
Aut_(Clp q) =~ Z> ® Z» with the signaturg+, +, +) if p =0 (mod 2)
and gq= 1 (mod 2) and also non-Abelian grouput.(C¢p q) ~ Qa/Z,
with the signaturéd—, —, —) if p = 1 (mod 2)and g= 0 (mod 2)

Proof:  Before we proceed to prove this theorem, let us consider in more details
a matrix (spinor) representation of the antiautomorphigms- A and A — A
According to Wedderburn-Artin theorem, the antiautomorphigm-> A corre-
sponds to an antiautomorphism of the full matrix algelka(K): A — AT, in
virtue of the well-known relationAB) " = BTAT, whereT is a symbol of transpo-
sition. On the other hand, in the matrix representation of the elemeatEe , g,

for the antiautomorphismd — g we haveA — A. A composition of the two
antiautomorphismg)” — A — A, gives an automorphisi’ — A, whichis an
internal automorphism of the algelvépn (K):

A=EATEL, (13)

whereE is a matrix, by means of which the antiautomorphidm-> Ais expressed
in the matrix representation of the algetilfaJ q- Under action of the antiautomor-
phismA — Athe units ofCt, q remain unalteredy — & therefore in the matrix
representation, we must demafid— &, where& = y(g) also. Therefore, for
the definition of the matrik in accordance with (13), we have

& - & =ESTEL. (14)

Or, let{&,, } be a set consisting of symmetric matricé;§f & &) andlet{&s } bea
set consisting of skewsymmetric matricé;}j (= —&,)- Then the transformation
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(14) may be rewritten in the following form:

Eo = o =EELE™, & — & = —E&E L

]

Whence
E,E=E&,, Ep E = —E&,. (15)

Thus, the matriE of the antiautomorphisml — A commutes with a symmetric
part of the spinbasis of the algeliZd, 4 and anticommutes with a skewsymmetric
part. An explicit form of the matribE in dependence on the type of the algebras
Ctp,q will be found later, but first let us define a general formEothat is, let us
show that for the form oE there are only two possibilities: (B is a product of
symmetric matrices or (& is a product of skewsymmetric matrices. Let us prove
this assertion another way: LEBt= &£,,&,, - - - E0.E5,E8, - - - £, b @ product o
symmetric and skewsymmetric matrices. At this pointds+k < p+q. The
permutation condition of the matri with the symmetric basis matric€s, have
aform

EnE = (1) 20 (i), Em sy Eaclpy - Epes
. (16)
E€w = (1" 70 (ti)uy + Ear 1y €y -+ Epi
From here we obtain a compariskA-s —i =i — 1 (mod 2), thatis, & + s =

0(mod 2) E and&,, anticommute and &+ s = 1 (mod 2) commute. Analogously,
for the skewsymmetric part we have

£ E = (110 (B)) s - - Ealy - Epy 1 Epy1 - - Epes .
Egﬂ] = (—1)k*JU(ﬂ|)ga1 e Easgﬁl “ee gﬁ1715ﬂ1+1 . Sﬂk

Fromthe comparisok— s = 2] — 1 (mod 2), itfollows thatat — s = 0 (mod 2),

E and&, anticommute and & — s = 1 (mod 2) commute. Let +s = p+q,

then from (16) we see that gt+ q = (mod 2),E and&,, anticommute, which

is inconsistent with (15). The cage+ q = 1 (mod 2) is excluded, since a di-
mensionality ofCépq is even (in the case of odd dimensionality the algebra
Clpi1qg (Clpg+1) is isomorphic to Engyz(lpg @ lp,q) = Mon(K) & Mon(K),
wherem = (p + q)/2. Let suppose now th&t+ s < p + g, that is, let us elim-
inate from the producE one symmetric matrix, thek+s= 1 (mod 2) and in
virtue of (16) the matrices,, that belong td= commute withE, but the matrix that
does not belong t& anticommute wittE. Thus, we came to a contradiction with
(15). Itis obvious that elimination of two, three, or more symmetric matrices from
E gives an analogous situation. Now, let us eliminate fibone skewsymmetric
matrix, thenk + s = 1 (mod 2) and in virtue of (16 and all&,, commute with
each other. Further, in virtue of (17) the matri¢gsthat belong to the produé
commute withE, whereas the the skewsymmetric matrix that does not belong to
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E anticommute wittE. Therefore we again come to a contradiction with (15). We
come to an analogous situation if we eliminate two, three, or more skewsymmet-
ric matrices. Thus, the produEtdoes not contain simultaneously symmetric and
skewsymmetric matrices. Hence it follows that the matrix of the antiautomorphism
A — Als a product of only symmetric or only skewsymmetric matrices.

Further, the matrix representations of the antiautomorpbism A*: Ax =
CATC1is defined in a similar manner. First of all, since under action of the
antiautomorphisnx we haveg — —g, in the matrix representation we must
demandf; — —¢&; also, or

& - —&=CeTC L (18)

Taking into account the symmetrf€,, } and the skewsymmetricy, } parts of the
spinbasis, we can write the transformation (18) in the form

Eu > —Eq =CECTY, & — & =CECL
Hence it follows
C&y = —&4,C, Ep C = C&,. (29)

Thus, in contrast with (15) the matrixof the antiautomorphisf anticommutes
with the symmetric part of the spinbasis of the algeBég ; and commutes with

the skewsymmetric part of the same spinbasis. Further, in virtue of (6) a matrix
representation of the automorphisiis defined as follows

A* = WAW 2, (20)

whereW is a matrix representation of the volume elemenfThe antiautomor-
phismA — A+, inturn, is the composition of the antiautomorphist> 4 with

the automorphisrd — A*; therefore, from (13) and (20) it follows (recall that
the order of the composition of the transformations (13) and (20) is not important,
sinceA* = (A)* = (A4%) : A* = WEATE- W1 = E(WWAW-1)TE-2, or

A* = (WE)AT(WE)™ = (EW)AT(EW) L, (21)

sinceW—! = WT. ThereforeC = EW or C = WE. By this reason a general form
of the matrixC is similar to the form of the matrik, that is,C is a product of
symmetric or skewsymmetric matrices only.

Let us consider in sequence definitions and permutation conditions of ma-
trices of the fundamental automorphisms (which are the elements of the groups
Aut(Ctp q)) for all eight types of the algebr& , 4, depending upon the division
ring structure.

(1) The typep — g = 0 (mod 8),K ~ R.

In this case according to Wedderburn—Artin theorem there is an isomorphism
Clpq = Man(R), wherem = 2X9. First, let consider a case= g = m. In the
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full matrix algebraM.n(R), in accordance with the signature of the algebég q
a choice of the symmetric and skewsymmetric matri€es- y(e) is hardly
fixed.

&' =

{Ei, ifl<i<m 22)

=&, fm+1<i<2m

That is, at this point the matrices of the first and second half of the basis have
a squaret| and —I, respectively. Such a form of the basis (22) is explained by
the following reason: Over the field there exist only symmetric matrices with

a squaretl, and there exist no symmetric matrices with a squatelnversely,
skewsymmetric matrices over the fieldonly have a square-I. Therefore, in

this case the matrix of the antiautomorphigim— A is a product o symmetric
matrices,E = £1& -+ - En, Or is a product ofm skewsymmetric matrices;, =
Emi1€mrz2 - - - Eam- IN @accordance with (15), let us find permutation conditions of
the matrixE with the basis matrice§;. If E = £1&; - - - En, and&; belong to the

first half of the basis (22), ¥ i < m, then

ES = (1) "&& - Eicalivr - Em,
. (23)
EE=(-1"15 & 1& 1 Em.

Therefore, we have a comparisom—i =i — 1 (mod 2), whencan= 2i —

1 (mod 2). Thus, the matrik anticommutes atm = 0 (mod 2) and commutes
atm = 1 (mod 2) with the basis matric&s. Further, letE = £1&; - - - &y, andé&;
belong to the second half of the basist 1 < i < 2m, then

ES = (—1)"&E. (24)

Therefore aim = 0 (mod 2),E commutes and ah = 1 (mod 2) anticommutes
with the matrices of the second half of the basis.

Let NnOWE = &y 1Emi2 - - - Eom be a product ofm skewsymmetric matrices,
then

E& =(-1)"GE 1<i<m (25)
and

E& = — (1) Emsamiz- - Eim1&ivr - Eom,

g m+l<i<2m (26)
SE= —(—1)"Enp1€mr2- - Ei—1ivr - - Eom,

that is, atm = 0 (mod 2)E commutes with the matrices of the first half of the
basis (22) and anticommutes with the matrices of the second half of (22). At
m = 1 (mod 2)E anticommutes and commutes with the first and the second half
of the basis (22), respectively.



782 Varlamov

Let us find permutation conditions of the matixwith a matrix W of the
volume element (a matrix of the automorphisinLetE = & &, - - - &y, then

m(m-1)

EW =868& - Ené1&- - Eom=(=1) 27 Enp1&mea - Eom,
m3r;1—1

(27)
WE = &5 - Eom&r&o- - Em=(—1)

Whence™32-1 = ™71 (mod 2) and, therefore ah = 0 (mod 2),E andW
commute, and an = 1 (mod 2) anticommute. It is easy to verify that analogous
conditions take place i = En1Emy2 - - - E2m i the product of skewsymmetric
matrices.

SinceC = EW, a matrix of the antiautomorphisthas a formC = £,.1
Emiz- - Eom if E=E1E---&En and correspondinglyC = £1& -+ - & If E=
Emi1€miz - - - Eam. Therefore, permutation conditions of the matricegand W
would be the same as thatBandW, that is,C andW commute ifm = 0 (mod 2)
and anticommute ifn = 1 (mod 2). It is easy to see that permutation conditions
of the matrixC with the basis matrice§ coincide with (23)—(26).

Out of dependence on the choice of the matrieemdC, the permutation
conditions between them in any of the two cases considered previously are defined
by the following relation

gm+1gm+2 co me-

EC = (—1)™CE, (28)

that is, the matriceg and C commute ifm = 0 (mod 2) and anticommute if
m =1 (mod 2).

Now, let us consider squares of the elements of the automorphism groups
Aut(Clpq), p— g = 0(mod 8), anth = g = m. For the matrices of the automor-
phisms™ andx, we have the following two possibilities:

(@ E=&& - -&m C=Enr1€mez - - Eom.

£2_ {-H, if m= 0,1 (mod 4) 2

+I, if m=0,3(mod4)
—1, if m=2,3(mod 4); -

=1, ifm=1,2(mod4)
(29)
(b) E=C&mni1émiz- - Eom, C=&& &

£2_ {+I, ifm=0,3(mod4) _, {+I, if m=0, 1 (mod 4)

—I, ifm=12(mod4); ~ _ |-I, ifm=2 3(mod4)
(30)

In virtue of (3), for the matrix of the automorphisiwe have alway¥V? = +I.
Now, we are in a position to define automorphism groups for thepypeal =
0 (mod 8). First of all, let us consider Abelian groups. In accordance with (27) and
(28), the automorphism group is Abeliamif= 0 (mod 2) ¥V, E, andC commute
with each other). In virtue of (15) and (22), the matighould be commuted with



Discrete Symmetries and Clifford Algebras 783

the first (symmetric) half and anticommuted with the second (skewsymmetric) half
of the basis (22). From (23)—(26) it is easy to see that this condition is satisfied
onlyif E = Eny1&my2 - - - Eam @andm = 0 (mod 2). Correspondingly, in accordance
with (19), the matrixC should be anticommuted with the symmetric half of the
basis (22) and commuted with the skewsymmetric half of the same basis. It is
obvious that this condition is satisfied onlyGf= &,&; - - - €y. Therefore, when
m = p = g in accordance with (30), there exist Abelian grodpg_(Ct, ) =~
Zy ® 7o with the signatureL{, 4+, +) if p, g = 0 (mod 4), andAut_(Clp q) =~ Za
with the signature-£, —, —) if p,q =2 (mod 4). Further, in accordance with
(27) and (28), the automorphism group is non-Abeliamit 1 (mod 2). In this
case, from (23)—(26) it follows that the matii&xcommutes with the symmetric
half and anticommutes with the skewsymmetric half of the basis (22) if and only
if E=&1&---Enis a product ofm symmetric matricesn = 1 (mod 8). In its
turn, the matrixC anticommutes with the symmetric half and commutes with
the skewsymmetric half of the basis (22) if and onlyCit= En1Emi2- - Eom-
Therefore, in accordance with (29), there exist non-Abelian gréups(Cep o) >~
D4/Z; with the signature, —, +) if p,q =3 (mod 4), andAut(Clpq) =~
D4/Z, with the signature-£, +, =) if p,q = 1 (mod 4).

In addition to the previously considered cage= q, the typep—qg =0
(mod 8) also admits two particular cases in relation with the algeBfag and
Cloq. Inthese cases, a spinbasis is defined as follows

ET = & forthe algebra€ig o, t—12
ET = —& forthealgebra€eos.

|
that is, a spinbasis of the algelég; ¢ consists of only symmetric matrices, and
that of C¢g g consists of only skewsymmetric matrices. According to (15), for the
algebraCt , o the matrixE should commute with alf;. Itis obvious that we cannot
take matrixE of the form&.&; - - - &, where 1< s < p, since ats = 0 (mod 2)E
and & anticommute, which contradicts with (15), andsat 1 (mod 2)E and
& that belong toE commute with each other, where§gsthat do not belong to
E anticommute withE, which again contradicts with (15). The case= p is
also excluded, since is even. Therefore, only one possibility remains, that is,
the matrixE is proportional to the unit matrixg ~ I. At this point, from (21) it
follows thatC ~ &,&; - - - €, and we see that the conditions (19) are satisfied. Thus,
the matrice€ ~ I, C = EW, andW of the fundamental automorphisms— A,
A — A+, and A — A* of the algebreCt, o (p =0 (mod 8)) from an Abelian
groupAut_(Cl ) =~ Z> ® Z». Further, for the algebré&3Zq g, in accordance with
(15) the matrixE should anticommute with aff;. It is easy to see that we cannot
take matrixE of the form&,&; - - - £k, where 1< k < g, since ak = 0 (mod 2) the
matrix E and the matrice§ that belong t& anticommute with each other, whereas
& that do not belong t& commute withE, which contradicts with (15). Inversely,
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if k=1 (mod 2),E and&; that belong tcE commute, buk andé&; that do not
belong toE anticommute, which also contradicts with (15). Itis obvious that in this
caseE ~ | is excluded; therefor ~ £,& - - - &. In this case, according to (19)
the matrixC is proportional to the unit matrix. Thus, the matriées- £1&; - - - &,

C =EW ~ [, andW of the automorphismsl - A, A - A*, and A — A* of

the algebraCly q (g = 0 (mod 8)) from the grouput_(Cloq) =~ Z> ® Z».

(2) The typep — g =2 (mod 8),K ~ R.

In virtue of the isomorphisn®¢ 4 =~ sz%q (R) for the typep — g = 2 (mod 8)
in accordance with the signature of the algebég 4, we have the following basis:

gl =

{&, if1<i<np, (31)

=&, ifp+l<i<p+aq.

Therefore, in this case the matrix of the antiautomorphisis a product ofp
symmetric matricesH = £1&; - - - £p) or is a product of| skewsymmetric matrices
(E = Ep+1€p12 - - - Ep+q)- Let us find permutation conditions of the matExvith
the basis matrice§. LetE = £,&, - - - £p, then

EE = (1P && - E1&igr - Ep,

_ 1<i< 32
EE = (—1)'715152-“&_15”1---5p, =t=Pp (32)

and
E& = (-1PSE, p+1l<i<p+q, (33)

that is, atp =0 (mod 2) the matrixt anticommutes with the symmetric and
commutes with the skewsymmetric part the basis (31). Correspondingby=at
1 (mod 2)E commutes with the symmetric and anticommutes with the skewsym-
metric part of the basis (31).

Analogously, leE = £y11Ep12- - - Eptq, then

EE =(-1)E 1<i<p (34)
and

E& = (-1 Epa€piz- - Eimaiva- - Eprg

. +1l<i<p+ 35
EE=—(-1)"p11Eps2- - E1&it1 Epras P P+a (39

that is, atg = 0 (mod 2) the matrixt commutes with the symmetric and an-
ticommutes with the skewsymmetric part of the basis (31). Correspondingly,
atq =1 (mod 2)E anticommutes with the symmetric and commutes with the
skewsymmetric part of (31).
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Further, permutation conditions of the matrides= £:,&; - - - £, andW are
defined by the following relations:

EW =£&&--- gpglgz te 5p+q = (_1) p(p;l) 5p+15p+2 o ‘5p+q, (36)

WE = £18 -+ Epiqala- Ep = (1) 7 TPIEL1Ep 0+ Eprq.

From a compariso®2-2 + pq = 221 (mod 2) it follows that the matrice
andW commute with each other g = 0 (mod 2) and anticommute ifq =
1 (mod 2). If we takéE = Ep1€p42- - - Eptq, then the relations

a@

+1)
EW = Ep1piz- - Epiqbila- - Eprq = (1) 2 TPIEE, - &,

WE = E1& - EpiqEpi1€piz- - Eprq = (1) 2 E1&E- - &p

give analogous permutation conditions terandW (pg= 0,1 (mod 2)). It is
obvious that permutation conditions 6f(the matrix of the antiautomorphisi)
with the basis matrice§ and withW are analogous to the conditions (32)—(35)
and (36)—(37), respectively.

Out of dependence on the choice of the matrieesmd C, permutation con-
ditions between them are defined by a relation

EC = (~1)PICE, (38)

that is,E andC commute ifpq = 0 (mod 2) and anticommute g = 1 (mod 2).
For the squares of the automorphisitisand * we have following two
possibilities:

(a) E == 5152 s gp, C = 5p+1(€p+2 e 5p+q.

5 {+I, if p=0,1(mod 4); C2={+I’ if g=0, 3 (mod 4);

1=, if p=2 3(mod4) —I, ifq=1,2(mod 4)
(39)

(37)

a(@+1)
2

(b) E= 5p+l€p+2 te 5p+q, C= 5152 v Sp.

2 _ +1, if g=0,3(mod 4); 2 +1, if p=0,1(mod 4);
~|-I, ifg=1,2(mod4) |1, if p=2,3(mod4)
(40)

For the typep — q = 2 (mod 8) in virtue of (3) a square of the matiikis always
equal to—1.

Now, let us consider automorphism groups for the type q = 2 (mod 8).
In accordance with (36)—(38), the automorphism gréuwp(C¢,, ) is Abelian if
pg = 0 (mod 2). Further, in virtue of (15) and (31), the matrix of the antiautomor-
phisni~should commute with the symmetric part of the basis (31) and anticommute
with the skewsymmetric part of the same basis. From (32)—(35), itis easy to see that



786 Varlamov

this condition is satisfied giq = 0 (mod 2) ifand only i€ = £p11Epi2- - - Epiq S

a product ofy skewsymmetric matrices (recall that for the type q = 2 (mod 8),

the numbersp and q are both even or both odd). Correspondingly, in accor-
dance with (19), the matriX should anticommute with the symmetric part of
the basis (31) and commute with the skewsymmetric part of the same basis.
It is obvious that this requirement is satisfied if and onlCit= £1&5--- &y is

a product ofp symmetric matrices. Thus in accordance with (40), there exist
Abelian groupsAut_(Ct, q) > Z4 with the signature<{, —, +) if p =0 (mod 4)

andq = 2 (mod 4) and with the signature-(+, —) if p=2 (mod 4) andg =

0 (mod 4). Further, according to (36)—(38), the automorphism group is non-Abelian
if pg=1 (mod 2). In this case, from (32)—(35) it follows that the matrix of the
antiautomorphism™ commutes with the symmetric part of the basis (31) and
anticommutes with the skewsymmetric part if and onhEi& £1&,--- & is a
product of p symmetric matrices. In its turn, the matrx anticommutes with

the symmetric part of the basis (31) and commutes with the skewsymmetric part
of the same basis if and only @ = £,11Ep+2 - - - Epiq- Therefore in accordance
with (39), there exist non-Abelian groupsit (C¢p q) ~ Qa/Z, with the signa-

ture (—, —, —) if p=3 (mod 4) andy = 1 (mod 4)Aut, (Clp q) =~ Q4/Z> and

with the signature-{, +, +) if p =1 (mod 4) andy = 3 (mod 4).

(3) The typep — q = 6 (mod 8),K ~ H.

First of all, over the ringk ~ H there exists no fixed basis of the form (22) or
(31) for the matrices;. In general, a number of the skewsymmetric matrices does
not coincide with a number of matrices with the negative squél%ez(—l) as it
takes place for the typgs— q = 0, 2 (mod 8). Thus, the matri¥ is a product of
skewsymmetric matriceg , among which there are matrices with positive and neg-
ative squares, df is a product of symmetric matricés, among which also there
are matrices with-{) and ) squares. Lek be a number of the skewsymmetric
matricesg; of a spinbasis of the algeb@¢, 4, 0 < k < p+ g. Among the ma-
trices&j, | have (+)-square and matrices have-{)-square. Let < k < p+q

and letE = &;,&, - - - £, be a matrix of the antiautomorphisph — A. Then,
permutation conditions of the matrix with the matrices;, of the symmetric
part (O<r < p+ g — k) and with the matriceg, of the skewsymmetric part
(0 < u < k) have the respective form

ES, = (-1F&E O<r<p+qg-—k, (41)
ES, = (1 0 (i0)€ifiz - Eivr€iv -~ i
ELE = ()"0 ()€l - - iy a€iu - i

that is, atk = 0 (mod 2) the matrixt commutes with the symmetric and an-
ticommutes with the skewsymmetric part of the spinbasis. Correspondingly, at

O<u<k (42
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k=1 (mod 2),E anticommutes with the symmetric and commutes with the
skewsymmetric part. Further, &= &.&,--- &, be a product of the sym-

metric matrices, then

ES, = (—1)PH 9 o (i1)E,E, - & &y &
Iy ( ) L U(r) 11%~12 1%l 41 Tptg—k 0<r < p+q_k (43)

EE= (1) o(ir)&, &, & 1&ivpy g

EEj, = (-1)PHI7kgE, O<u<k (44)

that is, atp + g — k = 0 (mod 2) the matriE anticommutes with the symmetric
and commutes with the skewsymmetric part of the spinbasis. Correspondingly, at
p+q— k=1 (mod 2E commutes with the symmetric and anticommutes with
the skewsymmetric part. It is easy to see that permutation conditions of the matrix
C with the basis matrice§ coincide with (41)—(44).

For the permutation conditions of the matridés= &, &, - - - &, £, - -
Ejk, E= 5]151'2 .- ~5jk, andC = 5i15i2 s gip+q—k we have

EW = (—1)“7 Hkprag g g

e (45)
WE = (-1) 2 "&.8, & o
EC = (—1)«P+a-KCE, (46)

Hence it follows that the matriced/, E, and C commute atk(p+q — k) =
0 (mod 2) and anticommute kfp + g — k) = 1 (mod 2). It is easy to verify that
permutation conditions for the matricés= &, &, - - - &, andC = &, &, - - - €,
would be the same.

In accordance with (15), (19), (41)—(44), and also with (45)—(46), the Abelian
automorphism groups for the typp—q=6 (mod 8) exist only ifE =
Ep&p, - EjandC =&, &, - &, K= 0(mod 2). Let andt be the quantities
of the matrices in the produéy,&;, - - - €., which have ) and (-)-squares, re-
spectively, and also I&tandg be the quantities of the matrices with the same mean-
inginthe product;, &, - - - &,,,,- Then, the grouput_(Cep q) > Z4 with the sig-
nature ¢, +, —) existsifl —t =0, 1,4,5(mod8)and — g = 2, 3, 6, 7 (mod 8)
(recall that for the typg — g = 6 (mod 8) we hav&V? = —I), and also, the group
Aut_(Ctp q) =~ Z4 with the signature£, —, +) existsifl —t = 2, 3, 6, 7 (mod 8)
andh — g =0, 1, 4,5 (mod 8). Further, from (15), (19), and (41)—(46), it follows
that the non-Abelian automorphism groups exist only # &, &, - -- &, and
C=¢&,&, - & k=1 (mod 2). At this point the grouput; (Clp q) == Qa/Z>
with the signature €, —, —) exists ifh—9g=2,3,6,7 (mod 8) and —t =
2,3, 6,7 (mod 8). Correspondingly, the grodpt.(Clp, q) =~ Da/Z, with the sig-
nature , +, +) existsith —g=0,1,4,5(mod8)and —t = 0, 1, 4, 5(mod 8).

In absence of the skewsymmetric matriges 0, the spinbasis dt¢ 4 contains
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only symmetric matrices. In this case, from (15), it follows that the matrix of
the antiautomorphisml — A should commute with all the basis matrices. It is
obvious that this condition is satisfied if and onlyEifis proportional to the unit
matrix. At this point, from (21), it follows thaf ~ £,&, - - - £y and we see that
condition (19) is satisfied. Thus, we have the Abelian gréup_(Ct, q) ~ Z4

with the signature-, +, —). In the other degenerate cdse- p + q, the spinba-

sis ofC¢,, q contains only skewsymmetric matrices; therefore, the matsiould
anticommute with all the basis matrices. This condition is satisfied if and only
if E~&1& - Epyq. INits turn, the matrixC commutes with all the basis ma-
trices if and only ifC ~ I. It is easy to see that in this case we have the group
Aut_(Clp q) = Z4 with the signature-{, —, +).

(4) The typep —q =4 (mod 8),K ~ H.

Itis obvious that a proof for this type is analogous to the gaseq = 6 (mod 8),
where alsd& ~ H. For the typep — q = 4 (mod 8) we hav&V? = +I. As well as
for the typep — q = 6 (mod 8), the Abelian groups exist onlyif= &£, &j, - - - &j,
andC = &,&,--- &, K= 0 (mod 2). At this point the grouput _(C¢;, q) =~
Zo ® Zp With (4, +, +) exists ifl —t, h—g=0,1,4,5 (mod 8), and also the
groupAut_(Cl q) > Zswith (4, —, —) existsifl —t,h —g= 2, 3,6, 7(mod 8).
Correspondingly, the non-Abelian group exist onli it a product ok skewsym-
metric matrices an@is a productop + g — ksymmetric matricek = 1 (mod 2).
The groupAut(Clpq) = D4/Z, with (+, —, +) exists ifh—g=23,6,7
(mod 8),I —t=0,1,4,5 (mod 8), and the grouput, (Clp q) =~ Da/Z, with
(+,+, —) existsifh—g=0,1,4,5(mod 8),| —t =2, 3,6, 7 (mod 8). For the
type p — g = 4 (mod 8) both the degenerate cakes 0 andk = p + q give rise
to the groupAut_(Clp q) >~ Zo @ Zo.

(5) Thetypep—qgq=1(mod 8) K~ R & R.

In this case a dimensionality + g is odd and the algebi@¢,, q is semi-simple.
Over the ringK ~ R & R the algebras of this type decompose into a direct sum
of two subalgebras with even dimensionality. At this point there exist two types of
decomposition (Porteous, 1969; Rashevskii, 1957):

Clpg = Clpg-10Clpg-1, (47)
Clpg = Clgp-1 0 Clg,p-1, (48)

where each algebi@¢,, 1 (Ctq,p-1) is obtained by means of either of the two
central idempotent§(1 t e ---epq) and isomorphisms

Cl} 4~ Clpg-1. (49)
Clh g~ Clgp1. (50)
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In general, the structure of the rifi§ ~ R & R in virtue of the decompositions
(47)-(48) and isomorphisms (49)—(50) admits all eight kinds of the automorphism
groups, since the subalgebras in the direct sums (47)—(48) have thp type=

2 (mod 8) or the typg — q = 0 (mod 8). More precisely, for the algebi@g, q of

the typep — g = 1 (mod 8), the subalgebras in the direct sum (47) have the type
p—qg =2 (mod 8) and only this type; therefore, in accordance with previously
obtained conditions for the type — q = 2 (mod 8), we have four and only four
kinds of the automorphism groups with the signatures-{, +), (—, —, +) and

(=, —. =), (=, +,+). Further, for the algebr&¢,o (p—q =1 (mod 8)), the
subalgebras in the direct sum (48) have the tppe q = 0 (mod 8); therefore,

in this case there exist four and only four kinds of the automorphism groups with
the signatures#, +, +), (+, —, =) and &, —, +), (+, +, —). In a general case,
Clpq, the typep — g =1 (mod 8) admits all eight kinds of the automorphism
groups.

(6) The typep —q =5 (mod 8),K ~ H & H.

In this case the algeb@¢,, q is also semi-simple and, therefore, we have decom-
positions of the form (47)—(48). By analogy with the type- g = 1 (mod 8), a
structure of the double quaternionic riiig~ H @ H in virtue of the decompo-
sitions (47)—(48) and isomorphisms (49)—(50), also admits, in a general case, all
eight kinds of the automorphism groups, since the subalgebras in the direct sums
(47)—(48) have the typp — q = 6 (mod 8) or the typg — q = 4 (mod 8). More
precisely, for the algebrasty 4 of the typep — g = 5 (mod 8), the subalgebras

in the direct sum (47) have the tyge— q = 6 (mod 8) and only this type; there-
fore, in accordance with previously obtained results for the quaternionic rings we
have four and only four kinds of the automorphism groups with the signatures
(-, +,-) (=,—,+)and , —, =), (—, +, +). Analogously, for the algebras
Ctpo (p—q =5 (mod 8)), the subalgebras in the direct sum (48) have the type
p — q = 4 (mod 8); therefore, in this case there exist four and only four kinds of
the automorphism groups with the signatures+, +), (+, —, —) and ¢+, —, +),

(+,+, —). In a general cas&/, 4, the typep — q = 5 (mod 8) admits all eight
kinds of the automorphism groups.

(7) The typep — q = 3 (mod 8),K ~ C.

For this type a centef of the algebraC¢, 4 consists of the unit and the volume
elementw = €& - - - €54, Sincep + g is odd and the elemeat commutes with
all the basis elements of the algel@®&, . Moreover,w? = —1, hence it follows
thatZ ~ R @ iR. Thus, for the algebra€¢, 4 of the typep — q = 3 (mod 8),
there exists an isomorphism

Clpgq ~Chy, (51)

wheren = p + @. Itis easy to see thatthe algelffa ; = Conin (51) isa complex
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algebra with even dimensionality, whereis either even or odd. More precisely,
the numbemis evenifp = 0(mod 2) and] = 1 (mod 2),and oddip = 1 (mod 2)
andq = 0 (mod 2). In accordance with Theorem 2nat= 0 (mod 2) the algebra
Com admits the Abelian grouput_(Con) =~ Z, ® Zp with (+, +, +), and atm =

1 (mod 2) the non-Abelian groudut, (Com) ~ Qa/Z, with (—, —, —). Hence it
follows the statement of the theorem for this type.

(8) The typep —q =7 (mod 8),K ~ C.

It is obvious that for this type the isomorphism (51) also takes places. Therefore,
the typep — g =7 (mod 8) admits the grouput_(Clpq) 2 Zr ® Z, if p=

0 (mod 2) andy = 1 (mod 2), and also the groujut, (Cl, q) ~ Q4/Z; if p=

1 (mod 2)andy=0(mod 2). O

Corollary 1.  The matriceg andC of the antiautomorphismd — AandA —
A* over the fieldF = R satisfy the following conditions

E'=(-)"E T =(-1)"%C, (52)
thatis,E is symmetric if m= 0, 1 (mod 4)and skewsymmetric if iz 2, 3 (mod 4)
CorrespondinglyC is symmetric if m= 0, 3 (mod 4)and skewsymmetric if B
1,2 (mod 4)

Proof: Let us consider first the types with the rifig~ R. As follows from
Theorem 4, the type — q = 0 (mod 8) admits the Abelian automorphism groups
(EC = CE) if E is the product ofy skewsymmetric matriceg|(= 0, 2 (mod 4))
andC is the product ofp symmetric matricesf = 0, 2 (mod 4)). Therefore,

E' = (5m+15m+2 e ‘52m)T = 52Tm o '5;+25rl+1

= (=&m) - (—Ems2)(—Em+1)

a9-1)

=&m-Emp2lmir = (—1) 7 E, (53)

C=(Ea&Em) =&} EJE] =Em--&E1=(-1) T C. (54)
Further, the typ@ — q = 0 (mod 8) admits the non-Abelian automorphism groups
(EC = —CE) if E is the product ofp symmetric matricesg = 1, 3 (mod 4)) and
C is the product ofj-skewsymmetric matrices|(= 1, 3 (mod 4)). In this case, we
have

EN=(&1&2Em) =&0 & & =Em- 561 = (1)

p(p

= E,  (55)

' = (5m+15m+2 T 52)T = ngm e gr;lr-&-Zgr;\r-ﬁ-l
= (_52m) t (_5m+2)(_5m+1)
= —Eom- - Emi2Emi = —(—1)FC. (56)
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In the degenerate ca€, o, p = 0 (mod 8), we hav& ~ landC ~ £1& - - - &,.

ThereforeE is always symmetric and™ = (—1)*>"C. In the other degenerate
caseClyq, g = 0 (mod 8), we havé& ~ £,& - - & andC ~ [; therefore E" =
(- 1)[4((47 E andC is always symmetric.
Since for the typep — g = 0 (mod 8) we havgo=q =m, orm= p and
m = ¢ for the degenerate cases (both degenerate cases correspond to the Abelian
groupZ, ® Zy), it is easy to see that the formulas (53) and (55) coincide with the
first formula of (52). For the matri&, we can unite the formulas (54) and (56) into
the formula which coincides with the second formula of (52). Indeed, the factor
(-1)" % does not change sign@' =
sign whemm is odd, which is equwalent to both formulas (54) and (56).
Further, the following real typ@ — g = 2 (mod 8) admits the Abelian au-
tomorphism groups iE = Ep1€py2- - - Eprg aNdC = £:1&> - - - Ep, wWherep and
g =0, 2 (mod 4). Therefore,

= (Ep+1&pr2- - £p+q) = g;rq 5;—+25;—+1
= (_5p+q) te (_5p+2)(_5p+1)

Cl(q 1)
= Epyq - Eps2lpr1 = (1) 2

(87)

(18 &) = E] S E] =y 82 = (- (59)

Correspondingly, the type — g = 2 (mod 8) admits the non-Abelian automor-
phism groups ifE = £1&---&p and C = Ep1Epy2 - - - Epyq, Wherep andq =
1, 3 (mod 4). In this case, we have

p(pP—1)

= (&1 8p) =€) EE =& &&= (— 1H)"E,  (59)
= (Ep1€piz+Epra)| = 5;+q 5T 25p+1
= (_Ep-i—q) te (_5p+2)(_5p+1)
= _5p+q T 5p+25p+1 = (60)

Itis easy to see that formulas (57)—(60) are similar to the formulas (53)—(56) and,
therefore, the conditions (52) hold for the type- q = 2 (mod 8).

Analogously, the quaternionic typg@s— q = 4, 6 (mod 8) admit the Abelian
automorphism groups & = &, &}, - - - €, andC = &, &, - - - &, Wherek and
p+ q — k are even (Theorem 4). Transposition of these matrices gives

T = (ghgjz T gik)T = gj—ggl—[
=(=&) - (—sz)(—fjl)

K(k—1)

=& &g, =(-1) 7 E, (61)
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C' = (&8, & k) =& L EEl =6, &8,

iprgk
= (—1)®E (62)
The non-Abelian automorphism groups take place for the typesq =4, 6
(mod 8) ifE = &6, -+ &, andC = E&j &), -+~ &), wherek and p+q — k
are odd. In this case we have

T = (Eilé’iz 5'D+q k) = gl—;rq K (Sl—zrgl—lr
— 5p+qfk . 5i25i1 _ (_1)(p+q k)(;quk—l) E, (63)

CT = (En&, &) =€ ELE] = (=€) - (=€) (=€1)

27
Kk(k—1)
==& &y = —(-1) =z C. (64)
As it takes place for these two types considered here, we again come to the same
situation. Therefore, the conditions (52) hold for the quaternionic typesy =
4,6 (mod 8).

In virtue of the isomorphism (51) and Theorem 4, the matrie@sndC for
the typesp — q = 3, 7 (mod 8) with the ringK ~ C have the following form:
E=86& - &m C=Ens1miz - Eam if m=1 (mod 2) EC = —CE) andE =
Emi1€miz Eom C=E1E -+ - Enif m = 0(mod 2) EC = CE). Itis obvious that
for these types the conditions (52) hold.

Finally, for the semi-simple types — g = 1, 5 (mod 8) in virtue of the de-
compositions (47)—(48) we have the formulas (53)—(56) or (57)—(60) in case of the
Mg K>~R&R(p—q=1(mod 8)) and the formulas (61)—(64) in case of the
ringK~HeH(p—q=>5(mod 8)).

An algebraic structure of the discrete transformations is defined by the iso-
morphism{ld, x, ™, %} ~ {1, P, T, PT} (Varlamov, 1999). Using (9) or (12), we
can apply this structure to the double coverings of the orthogonal d&gppq).
Obviously, in case of the typgs— g = 0, 2, 4, 6 (mod 8), itis established directly.
Further, in virtue of the isomorphism (51) for the tyges- q = 3, 7 (mod 8), we
have

Pin(p, q) ~ Pin(n — 1, C),

wheren = p + . Analogously, for the semi-simple typgs— g = 1, 5 (mod 8)
in virtue of the decompositions (47)—(48) the algel, ¢ is isomorphic to a
dlrect sum of two mutually annihilating simple |de%$1:l:w)cepq Clpq =~
3(1+ ®)Clp g ® 3(1 — w)Clpq, Wherew = e15..p4q. At this point, each ideal is
|somorph|c t(ﬂep,q 10r Clg p—1. Therefore, for the Clifford—Lipschitz groups of
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these types, we have the following isomorphisms:
Pin(p. g) ~ Pin(p. q — 1)|_J e12..p1qPin(p. q — 1),
Pin(p, q) ~ Pin(g, p — 1)U e..p+qPin(g, p — 1).

Theorem 5. Let Pin®™¢(p, q) be a double covering of the orthogonal group
O(p. q) of the real spac&®"% associated with the algebra(G 4. The squares of
symbols ab, c € {—, +} correspond to the squares of the elements of a finite group
Aut(Clpq) = {I,W, E,C} : a=W?, b=E? c=C? whereW, E, andC are the
matrices of the fundamental automorphissis> A*, A — A, and A — A* of

the algebra @, q, respectively. Then over the fieil= R in dependence on a
division ring structure of the algebra& 4, there exist eight double coverings of
the orthogonal group Qp, q):

(1) A non-Cliffordian group

(Spiny(p. q) © Z2 ® Zz ® Z3)

Pin***(p, q) ~ 7
2

existsifK ~ R and the numbers p and g form the type-jgf = 0 (mod 8)
and pg=0 (mod 4) and also if p—q=4 (mod 8)and K ~ H.
The algebras €, q with the ringsK *ReR, K~HeH (p—qg=
1, 5 (mod 8))admit the grouPin™**(p, q) if in the direct sums there
are addendums of the type—-pgq = 0 (mod 8)or p— q =4 (mod 8)
The types p- q = 3, 7 (mod 8) K ~ C admit a non-Cliffordian group
Pin™**(p4+qg—1,C) if p=0 (mod 2)and q= 1 (mod 2) Further,
non-Cliffordian groups

(Sping(p, 4) © (Zz ® Za)

PinP<(p, q) ~ 7 ,
2

with (a, b, ¢) = (+, —, —) existif p— q =0 (mod 8) p, q = 2 (mod 4)
andK ~ R, and also if p— q = 4 (mod 8)andK =~ H. Non-Cliffordian
groups with the signatureg®, b, ¢) = (—, +, —) and(a, b, ¢) = (—, —,
+) existovertherindk ~ R (p — g = 2 (mod 8))if p = 2(mod 4) g =

0 (mod 4)and p= 0 (mod 4) q = 2 (mod 4) respectively, and also these
groups exist over the rinfk ~ H if p — q = 6 (mod 8) The algebras
Clpq withthe ringsKk ~ROR, K~H®H (p—qg=1,5 (mod 8))
admit the groug?in™~~(p, q) if in the direct sums there are addendums
of the type p- q =0 (mod 8)or p— q =4 (mod 8), and also admit
the groupsPin™ ™~ (p, q) andPin™ " (p, q) if in the direct sums there
are addendums of the type-pg = 2 (mod 8)or p — g = 6 (mod 8)
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(2) A Cliffordian group

(Spiny(p, ) © Q4)
Zy

existsifK ~ R(p — g = 2 (mod 8))and p= 3 (mod 4) g = 1 (mod 4)
and also if p—q =6 (mod 8)and K ~ H. The algebras €, 4 with
the ringsK~ReR, K>HpH (p—q=1,5 (mod 8))admit the
group Pin™™7(p, q) if in the direct sums there are addendums of the
type p—q=2 (mod 8)or p—q=6 (mod 8) The types p-q =
3,7 (mod 8) K ~ C admit a Cliffordian grougPin™ " (p+q — 1, C),

if p =1 (mod 2)and q= 0 (mod 2) Further, Cliffordian groups

(Spiny(p. ) © Da)
Za :

Pin™™"(p,q) =~

Pin®*<(p, q) ~

with (a, b, ¢) = (—, +, +) existifK ~ R, (p — q = 2 (mod 8))and p=

1 (mod 4) q = 3 (mod 4) and also if p— g =6 (mod 8)and K ~ H.
Cliffordian groups with the signaturega, b, c) = (+, —, +) and
(a, b, c) = (+, +, —) exist over the ringk ¥ R, (p — q = 0 (mod 8))

if p,g= 3 (mod 4)and p q =1 (mod 4) respectively, and also these
groups exist over the rinil ~ H if p — g = 4 (mod 8). The algebras
Clpq with the ringsK RO R, K~H@ H(p—q=1,5 (mod 8))
admit the grougPin ™t (p, q) if in the direct sums there are addendums
of the type p- g = 2 (mod 8)or p — q = 6 (mod 8) and also admit the
groupsPin™™*(p, q) andPin*™™~(p, q) if in the direct sums there are
addendums of the type-pq = 0 (mod 8)or p — q = 4 (mod 8)

4. THE STRUCTURE OF Pin(p, q) 2 Pin(q, p)

It is easy to see that the definitions (9) and (12) are equivalent. Moreover,

Salingaros (1981, 1982, 1984) showed that there are isomorplisRZ, ~
Ct10 andZy4 =~ Clg ;. Further, smcé:ﬁq ~ C€+p in accordance with the def-
inition (10), it follows thatSpin(p, q) ~ Spin(g, p). On the other hand, since in
a general cas€l, q # Clq,p, from the definition (9) it follows thaPin(p, q) #
Pin(g, p) (or Pin®<(p, q) 2 Pin®>°(q, p)). In connection with this, some au-
thors (Caheret al., 1995, 1998; Choquet-Bruhat al., 1982; De Witt-Morette,
1982, 1989; Friedrich, 1999; Kirby, 1989) used notatié’rir:s+ ~ Pin(p, q) and
Pin™ >~ Pin(qg, p). In Theorems 4 and 5, we have established a relation between
the signatures

P=H+ ...+ —— ... 0)

p times g times
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of the spaceR P9, and the signaturea(b, c) of the automorphism groups 6%, 4

and corresponding &hrowski groups. This relation allows to completely define
the structure of the inequaliBin(p, q) 2 Pin(g, p) (Pin™ 2 Pin™). Indeed, from

(12) and (11), it follows thaBpiny(p, g) >~ Spiny(g, p), therefore, a nature of

the inequalityPin(p, q)  Pin(g, p) wholly lies in the double covering@®¢

of the discrete subgroup. For example, in accordance with Theorem 5 for the
type p—q =2 (mod 8) with the division ringk ~ R there exist the groups
Pin®P(p, q) ~ Pin*, where double coverings of the discrete subgroup have the
form: (1)C— 7~ =~ Qq, if p=3 (mod 4) andy = 1 (mod 4); (2)C—"* ~ Dy,

if p=1(mod 4) andy =3 (mod 4); 3)C— 1 ~Z, ® Z4, if p=0 (mod 4)

andg = 2 (mod 4); (4)C—~ ~ Zy ® Za, if p= 2 (mod 4) andy = 0 (mod 4).
Whereas the groups with opposite signat@ie;” ~ Pin®<(q, p), have the type

g — p = 6 (mod 8) with the rindK ~ H. In virtue of the more wide rin&K ~ H,

there exists a far greater choice of the discrete subgroups for each concrete kind
of Pin®¢(q, p). Thus,

Pin**(p, ) % Pin*"*(q, p)
p—q=2(mod8) q— p=6(mod 8)

Further, the type — q = 1 (mod 8) with the rindk >~ R & R in virtue of Theo-
rems 4 and 5 admits the gro®in®"¢(p, q) ~ Pin™, where the double covering
Cab¢ adopts all the eight possible values. Whereas the oppositegtype =

7 (mod 8) with the ringK ~ C admits the grougPin®¢(q, p) ~ Pin~, where
for the double coverin€®¢ of the discrete subgroup there are only two pos-
sibilities: (1) Ctt*t ~Z, ® Zy ® Zy, if p=0 (mod 2) andg =1 (mod 2);

(2) C—77 >~ Qq, if p=1 (mod 2) andy = 0 (mod 2). The analogous situation
takes place for the two mutually opposite tyges- g = 3 (mod 8) withK ~ C
andg — p = 5 (mod 8) withK ~ H ¢ H. Therefore,

Pin*>(p.q) % Pin**°(q, p)
p—-gq=1(mod8) q-— p=7(modS8);
Pin**(p,q) % Pin**(q. p)
p—gq=3(mMod8) q— p=5(mod8)

It is easy to see that an opposite type to the tppe g = 0 (mod 8) with the
ring K >~ R is the same typg — p = 0 (mod 8). Therefore, in virtue of Theo-
rems 4 and 5 double coverings?¢ for the groupsPin®®¢(p, q) ~ Pin*™ and
Pin®P:(q, p) ~ Pin~ coincide. The same is the situation for the type- q =

4 (mod 8) withK >~ H, which has the opposite tygp— p = 4 (mod 8). Thus,

Pin**(p, q) = Pin*"*(q, p)
p—q=0(mod8) q-— p=0(modS8);
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Pin®>¢(p, g) ~ Pin**°(q, p)
p—g=4(mod8) q-— p=4(mod8)

We will call the typesp — g = 0 (mod 8) andp — g = 4 (mod 8), which coincide
with their opposite types)eutral types

Example Letus consider a structure of the inequaRin(3, 1) 22 Pin(1, 3). The
groupsPin(3, 1) andPin(1, 3) are two different double coverings of the general
Lorentz group. These groups play an important role in physics (Carlip and De
Witt-Morette; 1998, De Witt-Morette and De Witt, 1990; De Witt-Morette and
Gwo, 1990; De Witt-Morettet al, 1997). As follows from (9) the grouin(3, 1)

is completely defined in the framework of the Majorana algélfg, which has
the typep — g = 2 (mod 8) and the division ringl ~ R. As noted previously, the
structure of the inequaliti?in(p, q) £ Pin(q, p) is defined by the double covering
Cab¢ From Theorems 4 and 5, it follows that the algeBra ; ~ M4(R) admits
one and only one grouBin™ (3, 1), where a double covering of the discrete
subgroup has afor@——~ >~ Q4. Indeed, let us consider a matrix representation
of the units ofC¢3 1, using the Maple V and the CLIFFORD package developed
by Ablamowicz (1996, 1998, 2000). Lt = (1 + e1)(1+ €34) be a primitive
idempotent of the algebi@¢s ; (prestored idempotent f@¢s; in CLIFFORD);
then a following CLIFFORD command sequence gives:

restart:with(Cliff4) :with(double):

dim := 4:

eval (makealiases(dim)):

B := linalg(diag(1,1,1,—-1)):

Clibasis := cbasis(dim):

data := clidata(B):

f := datal4]:

left_sbasis := minimalideal(clibasis,f,’left’):
Kbasis := Kfield(left_sbasis,f):

SBgens := left_sbasis[2]:FBgens := Kbasis[2]:
K_basis := spinorKbasis(SBgens,f,FBgens,’left’):
for i from 1 to 4 do

V V V V V V VYV VV\VYV

E[i] := spinorKrepr(e.i., K basis[1], FBgens, left’)od;

d 0 0 O 0 I1d O O

E._|0 -ld 0 o0 E._|ld 0 00

=10 0o —-id 0 |’ 2710 0 0 Id]|”
0 01Id O

0 O 0 -Id I
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0O 0 Id O 0 0 —-Id O
1o o o0 -ud o o o0

Es:=14 0 0o o0 | E2=|4 o o ol ©9
0 -1d 0 O 0 -id 0 O

It is easy to see that the matrices (65) build up a basis of the form (31). Since the
conditionpg = 1 (mod 2) is satisfied for the algeli£4s 1, the automorphism group
Aut(Cl3 1) is non-Abelian. In accordance with (15), the matighould commute

with a symmetric part of the basis (65) and anticommute with a skewsymmetric
part of (65). In this case, as follows from (32)-(35) and (65), the m&trix a
product ofp = 3 symmetric matrices, that is,

00 0 -1
00 -1 0
E=&&&%=[51 0 o
100 0

Further, matrices of the automorphismandx for the basis (65) have a form

0100 0 01 0
10 0 0 0 00 -1
W=abbbi=1 09 o0 0 1|° == _100 o0
0 0-10 0 10 0

Thus, a group of the fundamental automorphisms of the algéfarain the matrix
representation is defined by a finite groipw, E, C} ~ {l, 1234, £123, £4}. The
multiplication table of this group has a form

I E1234 €123 & I w E
| | E1234 E123 &y | | W E C
1234 || E1234 | | Eq &3 |~ W W[ -l C “E |. (66)
E123 E123 —&4 -1 E1234 E E | -C - W
Ea Ea E123 —E103 —I C C E -W —I1

Fromthetable, it follows thakut (Cfl3 1) >~ {I, W, E, C} >~ Q4/Z, and, therefore,

the algebra&C¢; ; admits a Cliffordian groupin™ (3, 1) (Theorem 5). It is easy

to verify that the double coverin@——~ >~ Q4 is an invariant fact for the algebra
Cl31, that is,C™—~ does not depend on the choice of the matrix representation.
Indeed, for each of the two commuting elements of the alg€bga, there exist
four different primitive idempotents that generate four different matrix representa-
tions of C¢3 1. The invariability of the previously mentioned fact is easily verified
with the help of a procedureommutingelements of the CLIFFORD package,
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which allows to consider in sequence all the possible primitive idempotents of the
algebraCts 1 and their corresponding matrix representations.

Now, let us consider discrete subgroups of the double cov@img, 3). The
groupPin(1, 3), in turn, is completely constructed within the spacetime algebra
C¢3 1 that has the opposite (in relation to the Majorana alg€igga) typep — q =
6 (mod 8) with the division rindK ~ H. According to Wedderburn—Artin theorem,
in this case there is an isomorphigdis ; >~ My(H). The following CLIFFORD
command sequence allows to find matrix representations of the units of the algebra
Ct3 1 for a prestored primitive idempoterfit= %(1 +€1)

> restart:with(Cliff4):with(double): (67)
> dim := 4: eval(makealiases(dim): (68)
> B := linalg(diag(l,-1,-1,-1)): (69)
> clibasis := cbasis(dim): (70)
> data := clidata(B): f := datal4]: (71)
> left_sbasis := minimalideal(clibasis, f, left’): (72)
> Kbasis := Kfield(left_sbasis, f): (73)
> SBgens := left_sbasis [2]: FBgens := Kbasis[2]: (74)

> K. basis := spinorKbasis (SBgens, f, FBgens, left’):(75)
> for i from 1 to 4 do (76)

E[i] := spinorKrepr(e.i.,K basis[1],FBgens, left’)od; (77)
._ 10 Id . |e o
El'_[ld 0] EZ'—[O —ez}’

. e3 0 .10 -
ES'—[O —e3] E4'—[|d 0 ]
At this point, the division ringK ~ H is generated by a séfl, e, e3, &3} ~
{1,1,], k}, wherei, j, andk are well-known quaternion units. The basis (78) con-
tains three symmetric matrices and one skewsymmetric matrix. Therefore, in ac-

cordance with (15) and (41)—(46), the matrix of the antiautomorpbism A is
a product of symmetric matrices of the basis (78). Thus,

(78)

k O 0 k
W:€1€25354:(0 —k>’ E:515253:<k O)’

c=ew= (9 1), "



Discrete Symmetries and Clifford Algebras 799

It is easy to verify that a set of the matrices (79) added by the unit matrix forms
the non-Abelian group\ut, (Cl1 3) >~ Q4/Z,, with a multiplication table of the
form (66). Therefore, the spacetime algek¥@ ;3 admits the Cliffordian group
Pin™™7(1, 3), where a double covering of the discrete subgroup has the form
C——~ ~ Q4. However, as follows from Theorem 4, in virtue of the more wide
ring K >~ H the groupPin™ 7 (1, 3) is not the only possible group for the alge-
braC¢; 3 >~ My(H). Indeed, looking over all the possible commuting elements of
the algebreCt; 3 we find with the help of the procedummmutingelements

that

> L1 := commutingelements(clibasis);
L1 :=[el] (80)
> L2 := commutingelements(remove (member,clibasis,L1));
L2 :=[el2] (81)
> L3 := commutingelements (remove (member,clibasis, [op(L1),
op(L2)1));
L3 :=[el3] (82)
> L4 := commutingelements (remove (member,clibasis, [op(L1),
op(L2),0p(L3)1));
L4 = [el4] (83)
> L5 := commutingelements (remove (member,clibasis, [op(L1),
op(L2),0p(L3),0p(L4)]1));
L5 = [e234] (84)
> f := cmulQ((1/2)*(Id + e2we3wed);
fi= %Id + %8234 (85)
> type(f,primitiveidemp) ;
true (86)

Itis easy to verify that primitive idempoteng$l + e1), 3 (1 + 1), 3(1 & €13),
and%(l =+ ey4) constructed by means of the commuting elements o, 13, andey4
generate matrix representations that give rise to the ghaitip(C¢; 3) >~ Qq4/Zo.
However, the situation changes for the eleneggtand the corresponding primitive
idempotent] (1 + ex34) (3(1 — €234)). Indeed, executing the commands (85) and
(86) and subsequently the commands (72)—(77), we find that
> for i from 1 to 4 do

E[i] := spinorKrepr(e.i., K -basis[1], FBgens, left’)od;
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.0 Id _[e2 0
El'_[ld o]’ EZ'—[O —eZ}’

._[e3a 0 _[ea 0
E3'—[o —e34] E“'—[o —e4]

where the division rindk ~ H is generated by a s¢t, e, &4, &4} >~ {1,1, ], k}.

The basis (87) consists of symmetric matrices only. Therefore in accordance with
(15), the matrixE should commute with all the matrices of basis (87). It is obvious
that this condition is satisfied onlyfifis proportional to the unit matrix (recall that
any element of the automorphism group may be multiplied by an arbitrary factor
n € IF, in this caséF = R). Further, a set of the matricé8 = £1£,E384, E ~ |,

and C = EW added by the unit matrix forms a finite group with the following
multiplication table

(87)

I |W]E]|C
| | W C
WIllwl|-1I]C]|-E
E E|C .
C CJl|-E|lW]|-I

As follows from the table, we have in this case the Abelian grdu (Cl1.3) >~ Za

with the signature-{, 4+, —). Thus, the spacetime algelté, ; admits the group
Pin— (1, 3), where a double covering of the discrete subgroup has the form
CoT— ~ Lo ® Zg.

This fulfilled analysis explicitly shows a difference between the two double
coveringsPin(3, 1) andPin(1, 3) of the Lorentz group. Since double coverings
of the connected components of both gro®s(3, 1) andPin(1, 3) are isomor-
phic, Spiny(3, 1) >~ Spiny(1, 3), the nature of difference between them consists
in the concrete form and number of the double cove@ig-° of the discrete
subgroups. So, for the Majorana algel@; 1, all the existing primitive idem-
potents;(1 + e)(1 =+ e3q), 3(1+ €)1+ epq), 31 £ &)(1+e1a), (L L e3)(1 £
€134), and;ll(l + e34)(1 £ ex34) generate 20 matrix representations, each of which
gives rise to the double coveriigy—~ >~ Q4. On the other hand, for the space-
time algebraC¢y 3 primitive idempotents; (1 + e14), 3(1+ 1), 3(1 + erp), and
%(1 =+ e13) generate eight matrix representations wWith =~ >~ Qq4, whereas re-
maining two primitive idempotenté(li €34) generate matrix representations
WithC—"~ ~ Z, ® Za.

Remark. Physicists commonly use a transition from some given signature to its
opposite (signature change) by means of a replaceéienti & (so-called Wick
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rotation). However, such a transition is unsatisfactory from a mathematical view-
point. For example, we can use the replacendent- i & for a transition from the
spacetime algebr@¢; 3 ~ M(H) to the Majorana algebr@¢s 1 >~ My(R) since

i € My(H), whereas an inverse transiti@d; ;1 — C¢1 3 can not be performed by
thereplacemerd, — &, since ¢ My(R). The mathematically correct alternative

to the Wick rotation is a tilt-transformation introduced by Lounesto (1993). The
tilt-transformation is expressed by a map— a, b, +b,a_ +b_a, —b_a_,
whereag, by € C@iq The further developing of the tilt-transformation and its
application for a formulation of physical theories in the spaces with different sig-
natures has been considered in the recent paper by Miralles (in press).

5. DISCRETE TRANSFORMATIONS AND BRAUER-WALL GROUPS

The algebraCt is naturallyZ,-graded. LetC¢™ (correspondinglyCe™) be
a set consisting of all even (correspondingly odd) elements of the alg#bra
The setCe¢* is a subalgebra o€¢. It is obvious thatC¢ = C¢t @ C¢—, and
alsoCetCet c Cet, CetCe~ c Ce—,CeCet c Ce—,Ce~Ce~ c Cet. Ade-
gree deg de of the even (correspondingly odd) element C¢ is equal to O
(correspondingly 1). Le®t and 28 be the two associativE,-graded algebras
over the fieldF; then a multiplication of homogeneous elements= 21 and
b € B inagraded tensor produt®b is defined as follows A ® b)(A' ® b') =
(—1)dedb deg' 9’ @ bb'. The graded tensor product of the two graded cen-
tral simple algebras is also graded central simple [Wall, 1964, Theorem 2]. The
Clifford algebraCet q is central simple ifp—q s 1,5 (mod 8). It is known
that for a Clifford algebra with odd dimensionality, the isomorphisms are as fol-
lows: Cﬂp a1 = ClpgandCel,, , ~ Clq p (Porteous, 1969; Rashevskii, 1957).
Thus, C@* 41 andC€ are central simple algebras. Further, in accordance
with Chevalley Theorem (Chevalley, 1955), for the graded tensor product there is
an isomorphisnC¢p, q®Cly o =~ Clpip q+q- TWO algebrat,  andCey o are
said to be of the same clasgif+ g’ = p’ + q (mod 8). The graded central simple
Clifford algebras over the fieltl = R form eight similarity classes, which, as it
is easy to see, coincide with the eight types of algeias,. The set of these 8
types (classes) forms a Brauer—Wall grdBijg; (Wall, 1964) that is isomorphic
to a cyclic groupZg. Thus, the algebr&¢, q is an element of the Brauer—\Wall
group, and a group operation is the graded tensor pragluét cyclic structure
of the groupBW; ~ Zg may be represented on the Trautman diagram (spino-
rial clock) (Budinich and Trautman, 1987, 1988) (Fig. 1) by means of a transition
Cﬁ;;,q—>C£p,q (the round on the diagram is realized by an hour-hand). At this point,
the type of the algebra is defined on the diagram by an equplityp = h + 8r,
whereh € {0, ..., 7},r € Z.

It is obvious that a group structure ov&t 4, defined byBW; ~ Zg, im-
mediately relates with the Atiyah—Bott—Shapiro periodicity (Atiylal., 1964).
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p—q=1(mod 8) —g=0
RGR— pP—q (mod 8)
—g= 7 1
P—¢=2(mod38) ,
R C
p—¢=T (mod 8)
P—q¢=3 (mod 8 H

)G _

v k y »— ¢ =6 (mod 8)
H 4.

mod 8)

— — HeH
P—qg=4( P—q =35 (mod 8)

Fig. 1. The Trautman diagram for the Brauer—Wall graBijz ~ Zsg.

In accordance with Atiyah (1964), the Clifford algebra over the figlg R is
modulo 8 periodicCl g4 >~ Clpq ® Clgo(Clpgrs =~ Clp g ® Clog).

Coming back to Theorem 4, we see that for each type of algebyg there
exists some set of the automorphism groups. If we take into account this relation,
then the cyclic structure of a generalized grdﬂm@b"’ would look as follows
(Fig. 2). First of all, the semi-simple algebr@s, q with the ringsKk ~ R @ R
andK ~H@ H (p—qg= 1,5 (mod 8)) form an axis of the eighth order, which
defines the cyclic groups. Further, the neutral typgs— q = 0 (mod 8) K ~ R)
andp—q=4 (mod 8) K ~ H), which in common admit the automorphism
groups with the signatures-( b, ¢), form an axis of the fourth order corresponding
to the cyclic groupZs. Analogously, the two mutually opposite types— q =
2 (mod 8) K~ R) andp — g =6 (mod 8) K ~ H), which in common admit
the automorphism groups with the signatureslf, c), also form an axis of the
fourth order. Finally, the typep — q = 3, 7 (mod 8) K ~ C) with the (+, +, +)
and (—, —, —) automorphism groups form an axis of the second order. Therefore,
BWAPC ~ 7, ® (Z4)? ® Zg, where Us)? = Zs ® Za.

Further, over the field = C, there exist two types of the complex Clifford
algebrasC, andC,;; >~ C, & C,. Therefore, a Brauer—-Wall grolW; acting
on a set of these two types is isomorphic to the cyclic gy he cyclic structure
of the groupBW; ~ Z, may be reeresented on the following Trautman diagram
(Fig. 3) by means of a transitidti; — C,, (the round on the diagram is realized by
an hour-hand). At this point, the type of algebra on the diagram is defined by an
equalityn = h 4+ 2r, whereh € {0, 1}, r € Z.

Itis obvious that a group structure ov@&y, defined by the grouBWe ~ 7,
immediately relates with a Modulo 2 periodicity of the complex Clifford algebras
(Atiyah et al,, 1964; Karoubi, 1979)Cp,» >~ C, ® C,.
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_7—:+

._.’+’_

Ty Ty T +7+a+

_7+7+ +:_a_

414+ + -+

+7_7— +1+7_

:{:7;)'*' R 0 (mod 8)
p—¢=1 (mod 8

Ty Ty T —-qg=7T d 8
T ¢ =17 (mod 8)
_—7-_"_:_*- 6
T p— ¢ =6 (mod 8)
p—q =3 (mod , 4+, —
e i
p—gq= g =5 (mod 8)
+,+,+ -
+7_7—' _>_a+
+:'—7+ T Ty T
++ - ~ .+
+++
+7—7—
+ -+
+ 4~

Fig. 2. The cyclic structure of the generalized groBpV2-"°.

From Theorem 2, it follows that the algelbita,, ~ Mn(C) admits the auto-
morphism grouphut_(Com) =~ Z, ® Z, with the signature{, +, +) if mis even,
and the groupAut, (Com) >~ Qa4/Z; with the signature-£, —, —) if mis odd. In
connection with this, the second complex tyBgn 1 =~ Com ® Con also admits

n =1 (mod 2)
Coaa

1 0

n =0 (mod 2)

Fig. 3. The Trautman diagram for the Brauer—Wall grdBijic ~ Z.
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m:!'3\’311
(+:4:4)

n =0 (mod 2)

Fig. 4. The cyclic structure of the generalized groBpV2"°.

both the previously mentioned automorphism groups. Therefore, if we take into
account this relation, the cyclic structure of a generalized gBW@b’C would

look as follows (Fig. 4). Both complex types= 0 (mod 2) anch = 1 (mod 2)

form an axis of the second order; therefoBa)\?>¢ ~ 7.
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